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Provenance is information recording the source, derivation, or history of some information.
Provenance tracking has been studied in a variety of settings, particularly database management
systems; however, although many candidate definitions of provenance have been proposed, the
mathematical or semantic foundations of data provenance have received comparatively little
attention. In this article, we argue that dependency analysis techniques familiar from program
analysis and program slicing provide a formal foundation for forms of provenance that are intended
to show how (part of) the output of a query depends on (parts of) its input. We introduce a semantic
characterization of such dependency provenance for a core database query language, show that
minimal dependency provenance is not computable, and provide dynamic and static approximation
techniques. We also discuss preliminary implementation experience with using dependency
provenance to compute data slices, or summaries of the parts of the input relevant to a given part of
the output.

1. Introduction

Provenance is information about the origin, ownership, influences upon, or other historical or
contextual information about an object. Such information has many applications, including eval-
uating integrity or authenticity claims, detecting and repairing errors, and memoizing and caching
the results of computations such as scientific workflows [Lynch, 2000, Bose and Frew, 2005,
Simmhan et al., 2005]. Provenance is particularly important in scientific computation and record-
keeping, since it is considered essential for ensuring the repeatability of experiments and judging
the scientific value of their results [Buneman et al., 2008a].

Most computer systems provide simple forms of provenance, such as the timestamp and
ownership metadata in file systems, system logs, and version control systems. Richer prove-
nance tracking techniques have been studied in a variety of settings, including databases [Cui
et al., 2000, Buneman et al., 2001, 2008b, Foster et al., 2008, Green et al., 2007], file sys-
tems [Muniswamy-Reddy et al., 2006], and scientific workflows [Bose and Frew, 2005, Simmhan
et al., 2005]. Although a wide variety of design points have been explored, there is relatively little
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understanding of the relationships among techniques or of the design considerations that should
be taken into account when developing or evaluating an approach to provenance. The mathemati-
cal or semantic foundations of data provenance have received comparatively little attention. Most
prior approaches have invoked intuitive concepts such as contribution, influence, and relevance
as motivation for their definitions of provenance. These intuitions suggest definitions that appear
adequate for simple (e.g. conjunctive) relational queries, but are difficult to extend to handle more
complex queries involving subqueries, negation, grouping, or aggregation.

However, these intuitions have also motivated rigorous approaches to seemingly quite different
problems, such as aiding debugging via program slicing [Biswas, 1997, Field and Tip, 1998,
Weiser, 1981], supporting efficient memoization and caching [Abadi et al., 1996, Acar et al.,
2003], and improving program security using information flow analysis [Sabelfeld and Myers,
2003]. As Abadi et al. [1999] have argued, slicing, information flow, and several other program
analysis techniques can all be understood in terms of dependence. In this article, we argue that
these dependency analysis and slicing techniques familiar from programming languages provide
a suitable foundation for an interesting class of provenance techniques.

To illustrate our approach, consider the input data concerning proteins and reactions shown in
Figure 1(a) and the SQL query in Figure 1(b) which calculates the average molecular weights of
proteins involved in each reaction. The result of this query is shown in Figure 1(c). The intuitive
meaning of the SQL query is to find all combinations of rows from the three tables Protein, Enzy-
maticReaction, and Reaction such that the conditions in the WHERE-clause hold, then group the
results by the Name field, while averaging the MW (molecular weight) field values and returning
them in the AvgMW field.

Since the MW field contains the molecular weight of a protein, it is clearly an error for the
italicized value in the result to be negative. To track down the source of the error, it would be
helpful to know which parts of the input contributed to, or were relevant to, the erroneous part
of the output. We can formalize this intuition by saying that a part of the output depends on a
part of the input if a change to the input part may result in a change to the output part. This is
analogous to the notion of dependence underlying program slicing [Weiser, 1981], a debugging
aid that identifies the parts of a program on which a program output may depend.

In this example, the input field values that the erroneous output AvgMW-value depends on are
highlighted in bold. The dependencies include the two summed MW values and the ID fields
which are compared by the selection and grouping query. These ID fields must be included be-
cause a change to any one of them could result in a change to the italicized output value—for
example, changing the occurrence of p4 in table EnzymaticReaction would change the average
molecular weight in the second row. On the other hand, the names of the proteins and reac-
tions are irrelevant to the output AvgMW—no changes to these parts can have any effect on the
italicized value, and so we can safely ignore these parts when looking for the source of the error.

This example is simplistic, but the ability to concisely explain which parts of the input influ-
ence each part of the output becomes more important if we consider a large query to a realistic
database with tens or hundreds of columns per table and thousands or millions of rows. Manu-
ally tracing the dependence information in such a setting would be prohibitively labor-intensive.
Moreover, dependence information is useful for a variety of other applications, including esti-
mating the freshness of data in a query result by aggregating timestamps on the relevant inputs, or
transferring quality annotations provided by users from the outputs of a query back to the inputs.
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(a)

Protein

ID Name MW · · ·

p1 thioredoxin 11.8 · · ·
p2 flavodoxin 19.7 · · ·
p3 ferredoxin 12.3 · · ·
p4 ArgR −700 · · ·
p5 CheW 18.1 · · ·
...

...
...

...

EnzymaticReaction

PID RID

p1 r1
p2 r1
p1 r2
p4 r2
p5 r3
...

...

Reaction

ID Name · · ·

r1 t-p + ATP = t d + ADP · · ·
r2 H2O + an a p → p + a c · · ·
r3 D-r-5-p = D-r-5-p · · ·
r4 β-D-g-6-p = f-6-p · · ·
r5 p 4�-p + ATP = d-CoA + d · · ·
...

...
...

(b)

SELECT R.Name as Name, AVERAGE(P.MW) as AvgMW
FROM Protein P, EnzymaticReaction ER, Reaction R
WHERE P.ID = ER.ProteinID, ER.ReactionID = R.ID
GROUP BY R.Name

(c)

Name AvgMW

t-p + ATP = t d + ADP 15.75

H2O + an a p → p + a c -338.2
D-r-5-p = D-r-5-p 18.1

...
...

Fig. 1. Example (a) input, (b) query, and (b) output data; input field names and values relevant to the
italicized erroneous output field or value are highlighted in bold.

For example, suppose that each part of the database is annotated with a timestamp. Given a
query, the dependence information shown in Figure 1 can be used to estimate the last modification
time of the data relevant to each part of the output, by summarizing the set of timestamps of parts
of the input contributing to an output part. Similarly, suppose that the system provides users with
the ability to provide quality feedback in the form of star ratings. If a user flags the negative
AvgMW value as being of low quality, this feedback can be propagated back to the underlying
data according to the dependence information shown in Figure 1 and provided to the database
maintainers who may find it useful in finding and correcting the error. In many cases, the user
who finds the error may also be the database maintainer, but dependency information still seems
useful as a debugging (or data cleaning) tool even if one has direct access to the data.

In this article, we argue that data dependence provides a solid semantic foundation for a prove-
nance technique that highlights parts of the input on which each part of the output depend. We
work in the setting of the nested relational calculus (NRC) [Buneman et al., 1994, 1995, Wong,
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1996], a core language for database queries that is closely related to monad algebra [Wadler,
1992]. The NRC provides all of the expressiveness of popular query languages such as SQL,
and includes collection types such as sets or multisets, equipped with union, comprehension, dif-
ference and equality operations. The NRC can also be extended to handle SQL’s grouping and
aggregation operations, and functions on basic types. We consider annotation-propagating se-
mantics for such queries and define a property called dependency-correctness, which, intuitively,
means that the provenance annotations produced by a query reflect how the output of the query
may change if the input is changed.

There may be many possible dependency-correct annotation-propagating queries correspond-
ing to an ordinary query. In general, it is preferable to minimize the annotations on the result,
since this provides more precise dependency information. Unfortunately, as we shall show, mini-
mal annotations are not computable. Instead, therefore, we develop dynamic and static techniques
that produce dependency-correct annotations that are not necessarily minimal. We have imple-
mented these techniques and found that they yield reasonable results on small-scale examples;
the implementation was used to generate the results shown in Figure 1.

1.1. Prior Work on Provenance

We first review the relevant previous work on provenance and contrast it with our approach.
We provide a detailed comparison with prior work on program slicing and information flow in
Section 6.

1.1.1. Provenance for database queries Provenance for database queries has been studied by a
number of researchers, beginning in the early 1990s [Buneman et al., 2001, 2002, 2008b, Cui
et al., 2000, Green et al., 2007, Wang and Madnick, 1990, Woodruff and Stonebraker, 1997].
Recent research on annotations, uncertainty, and incomplete information [Benjelloun et al., 2006,
Bhagwat et al., 2005, Geerts et al., 2006] has also drawn on these approaches to provenance; in
particular, definitions of provenance have been used to justify annotation-propagation behaviors
in these systems. We will focus on the differences between our work and the most recent work;
please see Buneman et al. [2008a] and Cheney et al. [2009] for more complete discussion of
research on provenance in databases.

Most prior work on provenance has focused on identifying information that explains why some
data is present in the output of a query (or view) or where some data in the output was copied
from in the input. However, satisfying semantic characterizations of these intuitions have proven
elusive; indeed, many of the proposed definitions themselves have been unclear or ambiguous.
Many proposed forms of provenance are sensitive to query rewriting, in that equivalent database
queries may have different provenance behavior. This raises a number of troubling issues, since
database systems typically rewrite queries modulo equivalence, so the provenance of a query
may change as a result of query optimization. Also, in part because of the absence of clear
formal definitions and foundations, these approaches have been difficult to generalize beyond
monotone relational queries in a principled way.

In why- and where-provenance, introduced by Buneman et al. [2001], provenance is studied
in a deterministic tree data model, in which each part of the database can be addressed by a
unique path. Buneman et al. [2001] considered two forms of provenance: why-provenance, which
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consists of a set of witnesses, or subtrees of the input that suffice to explain a part of the output,
and where-provenance, which consists of a single part of the input from which a given part of
the output was copied. Both forms of provenance are sensitive to query rewriting in general, but
Buneman et al. [2001] discussed normal forms for queries that avoid this problem.

Green et al. [2007] showed that relations with semiring-valued annotations on rows generalize
several variations of the relational model, including set, bag, probabilistic, and incomplete in-
formation models, and identified a relationship between free semiring-valued relations and why-
provenance. Foster et al. [2008] extended this approach to handle NRC queries and an unordered
variant of XML. These approaches also appear orthogonal to our approach, and in additional only
consider annotations at the level of elements of collections, not individual fields or collections,
and they do not handle negation or aggregation.

Buneman et al. [2008b] introduced a model of where-provenance for the nested relational
calculus. In their approach each part of the database is tagged with an optional annotation, or
color; colors are propagated to the output so as to indicate where parts of the output have been
copied from in the input. They studied the expressiveness of this model compared to queries that
explicitly manipulate annotations. They also investigated where-provenance for updates, which
we discuss in Section 1.1.2.

Our work is closest in spirit to the why-provenance and lineage techniques; however, in con-
trast to these techniques our approach annotates every part of the database and provides clear
semantic guarantees and qualitatively useful provenance information in the presence of nega-
tion, grouping and aggregation.

1.1.2. Provenance for database updates Some recent work has generalized where-provenance
to database updates [Buneman et al., 2006, 2008b], motivated by curated scientific databases that
are updated frequently, often by (manual) copying from other sources. This work has focused on
recording the external sources of the data in a database and tracking how the data has been re-
arranged within a database across successive versions. Accordingly, the provenance information
provided by these approaches only connects data to exact copies in other locations, and does not
track provenance through other operations. In this sense, it is similar to the where-provenance
approach considered by Buneman et al. [2001] for database queries.

Our approach addresses an orthogonal issue, that of understanding how data in the result of
a query depends on parts of the input; we therefore track provenance through copies as well as
other forms of computation. Although our definition of dependency-correctness could also be
used for updates, it is not clear whether this yields a useful form of provenance, and we plan to
investigate alternative dependency conditions that are more suitable for updates, using the update
language employed in [Buneman et al., 2008b].

1.1.3. Workflow provenance Provenance has also been studied in geospatial and scientific com-
putation [Bose and Frew, 2005, Foster and Moreau, 2006, Simmhan et al., 2005], particularly
for workflows (visual programs written by scientists). In their simplest form (see e.g. the first
Provenance Challenge [Moreau et al., 2007]), workflows are essentially directed acyclic graphs
(DAGs) representing a computation. For such DAG workflows, the provenance information that
is typically stored is simply the workflow DAG, annotated with additional information, such as
filenames and timestamps, describing the arguments that were used to compute the result of in-
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terest. This corresponds to a simple form of dependency tracking, although as far as we know no
research on workflow provenance has explicitly drawn this connection.

However, many more sophisticated workflow programming models have been developed, in-
volving concurrency and distributed computation. For these models, the appropriate correctness
criteria for provenance tracking are much less clear. In fact, the ordinary semantics of these sys-
tems is not always clearly specified. One principled approach recently introduced by Hidders
et al. [2007] defines provenance for the nested relational calculus augmented with additional
function symbols that represent calls to scientific workflow components. Their approach has so
far focused on defining provenance and not formulating or proving desirable correctness proper-
ties. We believe dependence analysis may provide an appropriate foundation for provenance in
this and other workflow programming models.

1.2. Contributions

The main contribution of this article is the development of a semantic criterion called dependency-
correctness that characterizes a form of provenance information we call dependency provenance.
Dependency-correctness captures an intuition that provenance should link a part of the output to
all parts of the input on which the output part depends, enabling us to make some predictions
about the effects of changes to the input and to quickly identify source data that contributed to
an error in the output.

Building on this framework, we show that (unsurprisingly) it is undecidable whether some
dependency-correct provenance information is minimal, and proceed to develop computable dy-
namic and static techniques for conservatively approximating correct dependency provenance.
These techniques, and their correctness proofs, are largely standard but the presence of data-
base query language features and collection types introduces complications that have not been
addressed before in work on information flow or program slicing.

We discuss a small-scale prototype implementation which we have used to generate static and
dynamic dependency provenance for small examples, including Figure 1. This implementation
demonstrates the practicality of static provenance analysis for typical queries, but does not es-
tablish the practicality of fine-grained dynamic dependence tracking in database queries. Many
practical techniques, such as lineage and provenance semiring [Cui et al., 2000, Green et al.,
2007], are based on a coarse-grained annotation strategy that propagates annotations at the level
of rows, while others, such as the DBNotes system, do support annotations on individual field
values [Bhagwat et al., 2005]. Finding practical ways to perform accurate dynamic dependency-
tracking is beyond the scope of this article, but there is at least some reason for optimism based
on this prior work.

1.3. Organization

The structure of the rest of this article is as follows. We review the syntax, type system and
semantics of the nested relational calculus in Section 2. We then introduce (in Section 3) the
annotation-propagation model, motivate and define dependency-correctness, and show that it is
impossible to compute minimal dependency-correct annotations. In Section 4 we describe a dy-
namic provenance-tracking semantics that is dependency-correct. We also (Section 5) introduce
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a static, type-based provenance analysis which is less accurate than provenance tracking, but can
be performed statically; we also prove its correctness relative to dynamic provenance tracking.
In Section 6, we discuss experience with a prototype implementation, and expand further upon
the relationship with prior work, and we discuss future work and conclude in Section 7.

2. Background

We will provide a brief review of the nested relational calculus (NRC) [Buneman et al., 1995],
a core database query language which is closely related to monad algebra [Wadler, 1992]. The
nested relational calculus is a typed functional language with types τ of the form:

τ ::= bool | int | τ1 × τ2 | {τ}

We consider base types bool and int, along with product types τ1 × τ2 and collection types {τ}.
Collection types typically are taken to be monads equipped with an addition operator (sometimes
called ringads); typical examples used in databases include lists, sets, or multisets, and in this
article we consider finite multisets (also known as bags).

The expressions of our variant of NRC are as follows:

e ::= x | let x = e1 in e2 | (e1, e2) | π1(e) | π2(e)
| b | ¬e | e1 ∧ e2 | e1 ≈ e2 | if e0 then e1 else e2

| i | e1 + e2 | sum(e)

| ∅ | {e} | e1 ∪ e2 | e1 − e2 | {e2 | x ∈ e1} |
�

e

Here, i ∈ Z = {. . . ,−1, 0, 1, . . .} denotes integer constants and b ∈ B = {true, false} de-
notes Boolean constants. The bag operations include ∅, the constant empty multiset; singletons
{e}; multiset union ∪, difference −, and comprehension {e2 | x ∈ e1}; and flattening

�
e. By

convention, we write {e1, . . . , en} as syntactic sugar for {e1} ∪ · · · ∪ {en}. Finally, we include
sum, a typical aggregation operation, which adds together all of the elements of a multiset and
produces a value; e.g. sum{1, 2, 3} = 6. By convention, we take sum(∅) = 0. We syntactically
distinguish between NRC’s equality operation ‘≈’ and mathematical equality ‘=’.

NRC expressions can be typechecked using standard techniques. Contexts Γ are lists of pairs
of variables and types x1 : τ1, . . . , xn : τn, where x1, . . . , xn are distinct. The rules for type-
checking expressions are shown in Figure 2.

We write Mfin(X) for the set of all finite multisets with elements drawn from X . The (stan-
dard) interpretation of base types as sets of values is as follows:

T [[bool]] = B = {true, false}
T [[int]] = Z = {. . . ,−1, 0, 1, . . .}

T [[τ1 × τ2]] = T [[τ1]]× T [[τ2]]
T [[{τ}]] = Mfin(T [[τ ]])

An environment γ is a function from variables to values. We define the set of environments
matching context Γ as T [[Γ]] = {γ | ∀x ∈ dom(Γ). γ(x) ∈ T [[Γ(x)]]}.

Figure 3 gives the semantics of queries. Note that we overload notation for pair projection πi
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Γ � e : τ

x:τ ∈ Γ
Γ � x : τ

Γ � e1 : τ1 Γ, x:τ1 � e2 : τ2

Γ � let x = e1 in e2 : τ2

i ∈ Z
Γ � i : int

Γ � e1 : int Γ � e2 : int
Γ � e1 + e2 : int

Γ � e : {int}
Γ � sum(e) : int

b ∈ B
Γ � b : bool

Γ � e0 : bool Γ � e1 : τ Γ � e2 : τ
Γ � if e0 then e1 else e2 : τ

Γ � e : bool
Γ � ¬e : bool

Γ � e1 : bool Γ � e2 : bool
Γ � e1 ∧ e2 : bool

Γ � e1 : τ1 Γ � e2 : τ2

Γ � (e1, e2) : τ1 × τ2

Γ � e : τ1 × τ2

Γ � πi(e) : τi
(i ∈ {1, 2})

Γ � e1 : τ Γ � e2 : τ
Γ � e1 ≈ e2 : bool Γ � ∅ : {τ}

Γ � e : τ
Γ � {e} : {τ}

Γ � e1 : {τ} Γ � e2 : {τ}
Γ � e1 ∪ e2 : {τ}

Γ � e1 : {τ} Γ � e2 : {τ}
Γ � e1 − e2 : {τ}

Γ � e1 : {τ1} Γ, x:τ1 � e2 : τ2

Γ � {e2 | x ∈ e1} : {τ2}
Γ � e : {{τ}}
Γ �

S
e : {τ}

Fig. 2. Well-formed query expressions

E [[x]]γ = γ(x) E [[let x = e1 in e2]]γ = E [[e2]]γ[x �→ E [[e1]]γ]

E [[i]]γ = i E [[e1 + e2]]γ = E [[e1]]γ + E [[e2]]γ

E [[sum(e)]]γ =
P

E [[e]]γ E [[b]]γ = b

E [[¬e]]γ = ¬E [[e]]γ E [[e1 ∧ e2]]γ = E [[e1]]γ ∧ E [[e2]]γ

E [[(e1, e2)]]γ = (E [[e1]]γ, E [[e2]]γ) E [[πi(e)]]γ = πi(E [[e]]γ) (i ∈ {1, 2})
E [[∅]]γ = ∅ E [[{e}]]γ = {E [[e]]γ}

E [[e1 ∪ e2]]γ = E [[e1]]γ ∪ E [[e2]]γ E [[e1 − e2]]γ = E [[e1]]γ − E [[e2]]γ

E [[
S

e]]γ =
S

E [[e]]γ E [[{e | x ∈ e0}]]γ = {E [[e]]γ[x �→ v] | v ∈ E [[e0]]γ}

E [[if e0 then e1 else e2]]γ =

(
E [[e1]]γ if E [[e0]]γ = true
E [[e2]]γ if E [[e0]]γ = false

E [[e1 ≈ e2]]γ =

(
true if E [[e1]]γ = E [[e2]]γ

false if E [[e1]]γ �= E [[e2]]γ

Fig. 3. Semantics of query expressions

ΠA(R) = {x.A | x ∈ R}
σA=B(R) =

[
{if x.A = x.B then {x} else ∅ | x ∈ R}

R× S = {(A : x.A, B : x.B, C : y.C, D : y.D, E : y.E) | x ∈ R, y ∈ S}
ΠBE(σA=D(R× S)) = {if x.A = y.D then {(B : x.B, E : y.E)} else ∅ | x ∈ R, y ∈ S}

R ∪ ρA/C,B/D(ΠCD(S)) = R ∪ {(A : y.C, B : y.D) | y ∈ S}
R− ρA/D,B/E(ΠDE(S)) = R− {(A : y.D, B : y.E) | y ∈ S}

sum(ΠA(R)) = sum{x.A | x ∈ R}
count(R) = sum{1 | x ∈ R}

Fig. 4. Example queries
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and bag operations such as ∪ and
�

; also, if S is a bag of integers, then
�

S is the sum of their
values (taking

�
∅ = 0). It is straightforward to show that

Lemma 2.1. If Γ � e : τ then E [[e]] : T [[Γ]] → T [[τ ]].

Remark 2.1. As discussed in previous work [Buneman et al., 1995], the NRC can express a
wide variety of queries including ordinary relational queries, nested subqueries, and grouping
and aggregation queries. The core NRC excludes a number of convenient features such as records
with named fields and comprehensions. However, these features can be viewed as syntactic sugar
for core NRC expressions. In particular, we use abbreviations such as:

{e | x1 ∈ e1, x2 ∈ e2} =
�
{{e | x2 ∈ e2} | x1 ∈ e1}

{e | x ∈ e0, C} =
�
{if C then {e} else ∅ | x ∈ e0}

{e | (x1, x2) ∈ e0} = {let x1 = π1(x), x2 = π2(x) in e | x ∈ e0}

Additional base types, primitive functions and relations such as real, / : real×real → real, and
average : {real} → real can also be added without difficulty. For example, using more readable
named records, comprehensions, and pattern-matching, the SQL query from Figure 1(b) can be
defined as

let X = {(r.Name, p.MW ) | r ∈ R, er ∈ ER, p ∈ P, er.RID = r.ID, p.ID = er.PID} in
{(n, average{mw | (n�,mw) ∈ X, n = n

�}) | (n, ) ∈ X}

Additional examples are shown in Figure 4.
We do not consider other features of SQL such as operator overloading or incomplete infor-

mation (NULL values).

3. Annotations, Provenance and Dependence

We wish to define dependency provenance as information relating each part of the output of a
query to a set of parts of the input on which the output part depends. Collection types such as sets
and bags are unordered and lack a natural way to address parts of values, so we must introduce
one. One technique (familiar from many program analyses [Nielson et al., 2005] as well as other
work on provenance [Buneman et al., 2008b, Wang and Madnick, 1990]) is to enrich the data
model with annotations that can be used to refer to parts of the value. In practice, the annotations
might consist of explicit paths or addresses pointing into a particular representation of a part of
the data, analogous to filenames and line number references in compiler error messages, but for
our purposes, it is preferable to leave the structure of annotations abstract; we therefore consider
annotations to be sets of colors, or elements of some abstract data type Color.

We can then infer provenance information from functions on annotated values by observing
how such functions propagate annotations; conversely, we can define provenance-tracking se-
mantics by enriching ordinary functions with annotation-propagation behavior. However, for any
ordinary function, there are many corresponding annotation-propagating functions so the ques-
tion arises of how to choose among them.

We consider two natural constraints on the annotated functions we will consider. First, if we
ignore annotations, the behavior of an annotated function should correspond to that of an ordinary
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function. Second, the behavior of the annotated functions should treat the annotations abstractly,
so that we may view the colors as locations. We show that both properties follow from a single
condition called color-invariance.

We next define dependency-correctness, a property characterizing annotated functions whose
annotations safely over-approximate the dependency behavior of some ordinary function. Such
annotations can be used to compute a natural notion of “data slices”, by highlighting those parts
of the input on which a given part of the output may depend. It is clearly desirable to produce
slices that are as small as possible. Unfortunately, minimal slices turn out not to be computable
since it is undecidable whether the annotations in the output of a dependency-correct function
are minimal. In the next sections, we will show how to calculate approximate dynamic and static
dependency information for NRC queries.

We define annotated values (a-values) v, raw values (r-values) w, and multisets of annotated
values V as follows:

v ::= w
Φ

w ::= i | b | (v1, v2) | V V ::= {v1, . . . , vn}

Annotations are sets Φ ⊆ Color of values from some atomic data type Color, called colors. We
often omit set brackets in the annotations, for example writing w

a,b,c instead of w
{a,b,c} and w

instead of w
∅. An a-value v is said to be distinctly colored if every part of it is colored with a

singleton set {a} and no color c is used more than once in v.
For each type τ , we define the set A[[τ ]] of annotated values of type τ as follows:

A[[bool]] = {bΦ | b ∈ B,Φ ⊆ Color}
A[[int]] = {iΦ | i ∈ Z,Φ ⊆ Color}

A[[τ1 × τ2]] = {(v1, v2)Φ | v1 ∈ A[[τ1]], v2 ∈ A[[τ2]],Φ ⊆ Color}
A[[{τ}]] = {V Φ | ∀v ∈ V.v ∈ A[[τ ]],Φ ⊆ Color}

Annotated environments �γ map variables to annotated values. We define the set of annotated
environments matching context Γ as A[[Γ]] = {�γ | ∀x ∈ dom(Γ).�γ(x) ∈ A[[Γ(x)]]}.

We define an erasure function |−|, mapping a-values to ordinary values (and, abusing notation,
also mapping r-values to ordinary values), and an annotation extraction function � − � which
extracts the set of all colors mentioned anywhere in an a-value or r-value, as follows:

|i| = i

|b| = b

|(v1, v2)| = (|v1|, |v2|)
|{V }| = {|v| | v ∈ V }
|wΦ| = |w|

�i� = ∅
�b� = ∅

�(v1, v2)� = �v1� ∪ �v2�
�{V }� =

�
{�v� | v ∈ V }

�wΦ� = Φ ∪ �w�

Two a-values are said to be compatible (written v ∼= v
�) if |v| = |v�|; also, an a-value v is said to

enrich an ordinary value v
� (written v � v

�) provided |v| = v
�.

We now consider annotated functions (a-functions) F : A[[τ ]] → A[[τ �]] on a-values. We say
that a-function F enriches an ordinary function f : T [[τ ]] → T [[τ �]] (written F � f ), provided
that ∀v ∈ A[[τ ]].f(|v|) = |F (v)|. We will also consider annotated functions F : A[[Γ]] → A[[τ ]]
mapping annotated environments to values. We say that an a-function F enriches an ordinary
function f : T [[Γ]] → T [[τ ]] (again written F � f ), provided that ∀γ ∈ A[[Γ]].f(|γ|) = |F (γ)|.

10



3.1. Color-invariance

Clearly, many exotic a-functions exist that are not enrichments of any ordinary function. For
example, consider

F (iΦ) =
�

1Φ (Φ = ∅)
0Φ (Φ �= ∅)

Here, F tests whether its annotation is empty or not, and there is no ordinary function f :
T [[int]] → T [[int]] such that ∀v.|F (v)| = f(|v|). In the rest of this article we will restrict at-
tention to a-functions F that are enrichments of ordinary functions.

In fact, we will restrict attention still further to a-functions whose behavior on colors is also
abstract enough to be consistent with an interpretation of colors in the input as addresses for parts
of the input. For example, consider G, H : A[[int]] → A[[int]] having the following behavior:

G(iΦ) =
�

i
∅ (Φ = ∅)

i
{c} (Φ �= ∅)

H(iΦ) = i
Φ−{c}

where in both cases c is some fixed color. Both functions are enrichments of the ordinary identity
function on integers, λi.i, but both perform nontrivial computations on the annotations. If we
wish to interpret the colors on these functions as representing sets of locations, then we want to
exclude from consideration functions like G whose behavior depends on the size of the annota-
tion set or functions like H whose behavior depends on a specific color.

By analogy with generic queries in relational databases [Abiteboul et al., 1995], such a-
functions ought to behave in a way that is insensitive to the particular choice of colors. More-
over, since a-values are annotated by sets of colors, the a-functions also ought to be insensitive to
properties of the annotations such as nonemptiness or equality. In particular, we expect that the
behavior of an a-function is determined by its behavior on distinctly-colored inputs.

To make this precise, we first need to define some auxiliary concepts.

Definition 3.1. An a-value v is distinctly-colored provided every subexpression w
Φ we have

Φ = {c} for some color c, and no two subexpressions occurring in v have the same color.

Example 3.1. For example, v = {(1a
, 1b)c}d is distinctly-colored, while v

� = {(1a
, 1a)c}d is

not, because the color a is re-used in two different subexpression occurrences of 1a.

A color substitution is a function α : color → {color} mapping colors to sets of colors. We
can lift color substitutions to act on arbitrary a-values as follows:

α(b) = b

α(i) = i

α(v1, v2) = (α(v1), α(v2))
α(V ) = {α(v) | v ∈ V }

α(wΦ) = (α(w))α[Φ]

where α[Φ] =
�
{α(c) | c ∈ Φ}. Note that for any v ∈ A[[τ ]], we have α(v) ∈ A[[τ ]]; we

sometimes write α
τ to indicate the restriction of α to A[[τ ]].
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Example 3.2. Continuing the previous example, consider the color substitution defined by α(a) =
{b, c} and α(x) = {x} for x �= a. Applying this substitution to v yields {(1a,b

, 1b)c}d. Applying
to {1a

, 2a,d}c yields {1b,c
, 2b,c,d}c.

We note some useful properties relating distinctly-colored values, color-substitution and the
erasure and color-support functions; these are easy to prove by induction.

Lemma 3.1. Suppose α : color → {color}. Then (1) |α(v)| = |v| and (2) �α(v)� = α[�v�].

Lemma 3.2. Suppose v is an a-value. Then there exists a distinctly-colored v0
∼= v and a color

substitution α0 such that α0(v0) = v.

Accordingly, for each ordinary value v fix a distinctly-annotated dc(v); moreover, for each a-
value v fix a color substitution αv such that αv(dc|v|) = v.

We now define a property called color-invariance, by analogy with the color-propagation
studied in [Buneman et al., 2008b] for annotations consisting of single colors. Color-invariance
is defined as follows.

Definition 3.2 (Color-invariance). An a-function F : A[[τ1]] → A[[τ2]] is called color-invariant
if whenever α : color → {color} then we have α

τ2(F (v)) = F (ατ1(v)).

As noted above, color-invariance has two important consequences. First, the behavior of a
color-invariant function is determined by its behavior on distinctly-colored inputs. Second, color-
invariant functions are always enrichments of ordinary functions.

Proposition 3.1. If F,G : A[[τ1]] → A[[τ2]] are color-invariant then the following are equivalent:

1 F = G

2 F (v) = G(v) for every distinctly-colored v ∈ A[[τ1]].
3 F (dc(v)) = G(dc(v)) for every ordinary value v ∈ T [[τ1]].

Proof. The implications (1) ⇒ (2) ⇒ (3) are trivial. We show (3) implies (1). Let v ∈ A[[τ1]]
be given. Then v = αv(dc(|v|)), so to prove F = G, it suffices to show:

F (v) = F (αv(dc(|v|))) = αv(F (dc(|v|))) = αv(G(dc(|v|))) = G(αv(dc(|v|))) = G(v)

Proposition 3.2. If F : A[[τ1]] → A[[τ2]] is color-invariant then F � f where f(v) = |F (dc(v))|.

Proof. Let v ∈ A[[τ1]] be given. Then to prove F � f , observe:

f(|v|) = |F (dc(|v|))| = |αv(F (dc(|v|)))| = |F (αv(dc(|v|)))| = |F (v)|

We write |F | for f provided F � f ; clearly, f is unique when it exists, and |F | exists for any
color-invariant F .

3.2. Dependency-correctness

We now turn to the problem of characterizing a-functions whose annotation behavior captures a
form of dependency information. Intuitively, an a-function F is dependency-correct if its output
annotations tell us how changes to parts of the input may affect parts of the output. First, we need
to capture the intuitive notion of changing a specific part of a value.
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Definition 3.3 (Equal except at c). Two a-values v1, v2 are equal except at c (v1 ≡c v2) pro-
vided that they have the same structure except possibly at subterms labeled with the color c; this
relation is defined as follows:

d ∈ B ∪ Z
d ≡c d

v1 ≡c v
�
1 v2 ≡c v

�
2

(v1, v2) ≡c (v�1, v�2)
v1 ≡c v

�
1 · · · vn ≡c v

�
n

{v1, . . . , vn} ≡c {v�1, . . . , v�n}
w1 ≡c w2

w
Φ
1 ≡c w

Φ
2

c ∈ Φ1 ∩ Φ2

w
Φ1
1 ≡c w

Φ2
2

Furthermore, we say that two annotated environments �γ, �γ� are equal except at a (written �γ ≡a

�γ�) if their domains are compatible (dom(�γ) = dom(�γ�)) and they are pointwise equal except at
a, that is, for each x ∈ dom(�γ), we have �γ(x) ≡a �γ�(x).

Remark 3.1. For distinctly-colored values, a color serves as an address uniquely identifying a
subterm. Thus, ≡c relates a distinctly-colored value to a value which can be obtained by mod-
ifying the subterm located at c; that is, if we write v1 as C[v�1] where C is a context and v

�
1 is

the subterm labeled with c in v1, and v1 ≡c v2, then v2 = C[v�2] for some subterm v
�
2 labeled

with c. Note that v
�
2 and v2 need not be distinctly colored, and that ≡c makes sense for arbitrary

a-values, not just distinctly colored ones.

Example 3.3. Consider the two a-environments:

�γ = (R : {(1c1 , 3c2 , 5c3)b1 , . . .}a
,S : · · · )

�γ� = (R : {(2c1 , 3c2 , 5c3)b1 , . . .}a
,S : · · · )

We have �γ ≡a �γ�, �γ ≡b1 �γ�, and �γ ≡c1 �γ�, assuming that the elided portions are identical.

Definition 3.4 (Dependency-correctness). An a-function F : A[[Γ]] → A[[τ ]] is dependency-
correct if for any c ∈ Color and �γ, �γ� ∈ A[[Γ]] satisfying �γ ≡c �γ�, we have F (�γ) ≡c F (�γ�).

Example 3.4. Recall �γ, �γ� as in the previous example. Suppose F is dependency-correct and

F (�γ) = {(1c1 , 3c2 , 5c3)b1}a
.

Since �γ ≡c1 �γ�, we know that F (�γ) ≡c1 F (�γ�) so we can see that F (�γ�) must be of the form

{(xc1 , 3c2 , 5c3)b1}a

for some x ∈ Z. We do not necessarily anything more about the value of x; this is not captured
by dependency-correctness.

Remark 3.2. Dependency-correctness tells us that for any c, we must have F (�γ) = C[v1, . . . , vn]
and F (�γ�) = C[v�1, . . . , v�n], where C[−, . . . ,−] is a context not mentioning c and v1, . . . , vn

and v
�
1, . . . , v

�
n are labeled with c. Thus, F ’s annotations tell us which parts of the output (i.e.,

v1, . . . , vn) may change if the input is changed at c. Dually, they also tell us what part of the
output (i.e., C[−, . . . ,−]) cannot be changed by changing the input at c.

We can consider the parts of the output labeled with c to be a forward slice of the input at c;
it shows all of the parts of the output that may depend on c. Conversely, suppose the output is of
the form C

�[wΦ]. Then we can define a backward slice corresponding to this part of the output
by factoring �γ into C[v1, . . . , vn] where C is as small as possible subject to the constraint that
Φ∩�vi� = ∅ for each i. This context C[−, . . . ,−] identifies all of the parts of the input on which
a given part of the output may depend.
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Of course, dependency-correctness does not uniquely characterize the annotation behavior
of a given F . It is possible for the annotations to be dependency-correct but inaccurate. For
example we can always trivially annotate each part of the output with every color appearing in
the input. This, of course, tells us nothing about the function’s behavior. In general, the fewer
the annotations present in the output of a dependency-correct F , the more they tell us about F ’s
behavior. We therefore consider a function F to be minimally annotated if no annotations can be
removed from F ’s output for any v without damaging correctness.

Example 3.5. For example, consider the ordinary function

f(x, y) =
�

y : x = 0
x + 1 : x �= 0

.

Then the function

F (xa
, y

b) =
�

y
a,b : x = 0

(x + 1)a,b : x �= 0
.

is dependency-correct: trivially so, since it always propagates all annotations from the input to
each part of the output. Conversely,

G(xa
, y

b) =
�

y
a,b : x = 0

(x + 1)a : x �= 0
.

is dependency-correct and minimally annotated. To see that G is dependency-correct, note that
if we evaluate G(x, y) on x �= 0 then changing only the value of y (annotated by b) can never
change the result. To see that G is minimally annotated, it suffices to check that removing any of
the annotations breaks dependency-correctness.

We say that a query e is constant if [[e]]γ = v for some v and every suitable γ. Clearly, a query
is constant if and only if it has a dependency-correct enrichment which annotates each part of the
result with ∅.

Proposition 3.3. It is undecidable whether a Boolean NRC query is constant.

Proof. Recall that query equivalence is undecidable for the relational calculus [Abiteboul
et al., 1995]; for NRC, equivalence is undecidable for queries e(x), e�(x) over a single vari-
able x. Given two such queries, consider the expression �e = e(x) ≈ e

�(x) ∨ y (definable as
¬(¬(e(x) ≈ e

�(x)) ∧ ¬y)), where y is a fresh variable distinct from x. The result of this expres-
sion cannot be false everywhere since the disjunction is true for y = true, so �e is constant iff
[[�e]]γ = true for every γ iff e ≡ e

�.

Clearly, an annotation is needed on the result of a Boolean query if and only if the query is not a
constant, so finding minimal annotations (or minimal slices) is undecidable. As a result, we can-
not expect to be able to compute minimal dependency-correct annotations. Dependency-tracking
is difficult even if we consider sublanguages for which equivalence is decidable. For example, if
we just consider Boolean expressions, finding minimal correct dependency information is also
intractable, by an easy reduction from the validity problem. These observations motivate consid-
ering approximation techniques, such as those in the next two sections.
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(wΦ)+Φ0 = wΦ∪Φ0 (iΦ1
1 ) b+ (iΦ2

2 ) = (i1 + i2)
Φ1∪Φ2

b¬ (bΦ) = (¬b)Φ (bΦ1
1 ) b∧ (bΦ2

2 ) = (b1 ∧ b2)
Φ1∪Φ2

bπi((v1, v2)
Φ) = v+Φ

i (wΦ1
1 ) b∪ (wΦ2

2 ) = (w1 ∪ w2)
Φ1∪Φ2

�cond(trueΦ, v1, v2) = v+Φ
1

�cond(falseΦ, v1, v2) = v+Φ
2

dX
({v1, . . . , vn}Φ) = (v1 b+ · · · b+ vn)+Φ

c[{v1, . . . , vn}Φ = (v1 b∪ · · · b∪ vn)+Φ

{v(x) | x b∈ wΦ} = {v(x) | x ∈ w}Φ

(wΦ1
1 ) b− (wΦ2

2 ) = {v ∈ w1 | |v| �∈ |w2|}Φ1∪�w1�∪Φ2∪�w2�

v1 b≈ v2 =

(
true�v1�∪�v2� |v1| = |v2|
false�v1�∪�v2� |v1| �= |v2|

Fig. 5. Auxiliary annotation-propagating operations

Remark 3.3 (Uniqueness of minimum annotations). We have shown that annotation mini-
mality is undecidable. However there is another interesting question that we have not answered:
specifically, given a function f , is there a unique minimally-annotated function F � f? To show
this, one strategy could be to define a meet (greatest lower bound) operation v�w on compatible
annotated values, lift this to compatible annotated functions (F �G)(x) = F (x) �G(x), show
that dependency-correctness is preserved by �, and show that the greatest lower bound of the set
of all dependency-correct enrichments of f exists and is dependency-correct.

However, actually defining the meet operation on values that preserves dependency-correctness
appears nontrivial. For example, it does not work to simply define the meet as the pointwise inter-
section of corresponding annotations. Indeed, this is not even well-defined since the “pointwise
intersection” of {1a

, 1b} with itself could either be {1a
, 1b} or {1∅, 1∅}. We therefore leave the

uniqueness of minimally annotated functions as a conjecture.

4. Dynamic Provenance Tracking

We now consider a provenance tracking approach in which we interpret each expression e as
a dependency-correct a-function P[[e]]. The definition of the provenance-tracking semantics is
shown in Figure 6. Auxiliary operations are used to define P[[−]]; these are shown in Figure 5.
In particular, note that we define an auxiliary operation (wΦ)+Ψ = w

Φ∪Ψ that adds Ψ to the
top-level annotation of an a-value w

Φ.
Many cases involving ordinary programming constructs are self-explanatory. Constants always

have empty annotations: nothing in the input can affect them. Built-in functions such as +,∧,¬
propagate all annotations on their arguments to the result. For a conditional if e0 then e1 else e2,
the result is obtained by evaluating e1 or e2, and combining the top-level annotation of the result
with that of e0. A constructed pair has an empty top-level annotation; in a projection, the top-level
annotation of the pair is merged with that of the returned value.

In the case for let-binding, note that we bind x to the annotated result of evaluating e1, and then
evaluate e2. It is possible for the dependencies involved in constructing x to not be propagated to
the result, if x does not happen to be used in evaluating e2. This safe because query expressions
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P[[x]]bγ = bγ(x) P[[let x = e1 in e2]]bγ = P[[e2]](bγ[x �→ P[[e1]]bγ])

P[[i]]bγ = i∅ P[[e1 + e2]]bγ = (P[[e1]]bγ) b+ (P[[e2]]bγ)

P[[sum(e)]]bγ = cP(P[[e]]bγ) P[[b]]bγ = b∅

P[[¬e]]bγ = b¬(P[[e]]bγ) P[[e1 ∧ e2]]bγ = (P[[e1]]bγ) b∧ (P[[e2]]bγ)

P[[(e1, e2)]]bγ = (P[[e1]]bγ,P[[e2]]bγ)∅ P[[πi(e)]]bγ = bπi(P[[e]]bγ) (i ∈ {1, 2})
P[[∅]]bγ = ∅∅ P[[{e}]]bγ = {P[[e]]bγ}∅

P[[e1 ∪ e2]]bγ = (P[[e1]]bγ) b∪ (P[[e2]]bγ) P[[e1 − e2]]bγ = (P[[e1]]bγ) b− (P[[e2]]bγ)

P[[
S

e]]bγ = bS P[[e]]bγ P[[{e | x ∈ e0}]]bγ = {P[[e]](bγ[x �→ v]) | v b∈ P[[e0]]bγ)}
P[[e1 ≈ e2]]bγ = (P[[e1]]bγ) b≈ (P[[e2]]bγ) P[[if e0 then e1 else e2]]bγ = �cond(P[[e0]]bγ,P[[e1]]bγ,P[[e2]]bγ)

Fig. 6. Provenance-tracking semantics

involve neither stateful side-effects nor nontermination, in contrast to most work on information
flow and slicing in general-purpose languages. Similarly, dependencies can be discarded in pair
projection expressions πi(e) and set comprehensions {e2 | x ∈ e1}, and again this is safe because
queries are purely functional and terminating.

The cases involving collection types deserve further explanation. The empty set is a constant,
so has an empty top-level annotation. Similarly, a singleton set constructor has an empty anno-
tation. For union, we take the union of the underlying bags (of annotated values) and fuse the
top-level annotations. For comprehension, we leave the top-level annotation alone. For flattening�

e, we take the lifted union (�∪) of the elements of e and add the top-level annotation of e. Sim-
ilarly, �sum(e) uses �+ to add together the elements of e, fusing their annotations with that of e.
For set difference, to ensure dependency-correctness, we must conservatively include all of the
colors present on either side in the annotation of the top-level expression. Similarly, for equality
tests, we must include all of the colors present in either value in the result annotation.

Note that equivalent expressions e ≡ e
� need not satisfyP[[e]] ≡ P[[e�]]; for example, x−x ≡ ∅

but P[[x− x]] �≡ P[[∅]], since if �γ(x) = {1d}c then P[[x− x]]�γ = ∅c,d.

Example 4.1. Consider an annotated input environment �γ, shown in Figure 7(a), of schema
R : {(A : int, B : int)}, S : {(C : int, D : int, E : int)} (we again use named-record syntax for
readability). Figure 7(b) shows the provenance tracking semantics of the example queries from
Figure 4. We write a123 as an abbreviation for the set {a1, a2, a3}, etc. Note that in the count
example query, the output depends only on the number of rows in the input and not on the field
values; we cannot change the number of elements of a multiset by changing field values.

Example 4.2 (Grouping and aggregation). Consider a query that performs grouping and ag-
gregation, such as

SELECT A, SUM(B) FROM R GROUP BY A

First, let

X = {(A : x.A, B : {y.B | y ∈ R, x.A = y.A}) | x ∈ R}
When run against the environment �γ in Figure 7(a), we obtain result

X = {(A : 1a1 , B : {1b1 , 2b2}a123), (A : 1a2 , B : {1b1 , 2b2}a123), (A : 2a3 , B : {3b3}a123)}
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(a)

bγ = [R := {(A : 1a1 , B : 1b1), (A : 1a2 , B : 2b2), (A : 2a3 , B : 3b3)},
S := {(C : 1c1 , D : 2d1 , E : 3e1), (C : 1c2 , D : 1d2 , E : 4e2)}]

(b)

P[[ΠA(R)]]bγ = {(A : 1a1), (A : 1a2), (A : 2a3)}
P[[σA=B(R)]]bγ = {(A : 1a1 , B : 1b1)}a123,b123

P[[R× S]]bγ = {(A : 1a1 , B : 1b1 , C : 1c1 , D : 2d1 , E : 3e1),

(A : 1a1 , B : 1b1 , C : 1c2 , D : 1d2 , E : 4e2), . . .}
P[[ΠBE(σA=D(R× S))]]bγ = {(B : 1b1 , E : 4e2), (B : 2b2 , E : 4e2),

(B : 3b3 , E : 3e1)}a123,d12

P[[R ∪ ρA/C,B/D(ΠCD(S))]]bγ = {(A : 1a1 , B : 1b1), (A : 1a2 , B : 2b2), (A : 2a3 , B : 3b3),

(A : 1c1 , B : 2d1), (A : 1c2 , B : 1d2)}
P[[R− ρA/D,B/E(ΠDE(S))]]bγ = {(A : 1a1 , B : 1b2), (A : 1a2 , B : 2b2)}a123,b123,d12,e12

P[[sum(ΠA(R))]]bγ = 4a1,a2,a3

P[[count(R)]]bγ = 3

P[[count(σA=B(R))]]bγ = 1a123,b123

Fig. 7. (a) Annotated input environment (b) Examples of provenance tracking

Note that since we consider collections to be multisets, we get two copies of (1, {1, 2}), one
corresponding to a1 and one corresponding to a2. Also, since the subqueries computing the B-
values inspect the A-values, each of the groups depends on each of the A-values. We can obtain
the final result of aggregation by evaluating

Y = {(A : x.A, B : sum(x.B)) | x ∈ X}
= {(A : 1a1 , B : 3a123b12), (A : 1a2 , B : 3a123b12), (A : 2a3 , B : 3a123b3)}

Remark 4.1. Our approach to handling negation and equality may result in large annotations in
some cases. For example, consider {1a

, 2b}c − {1d
, 3e}f . Changing any of the input locations

a, b, c, d, e, f can cause the output to change. For example, changing 1a to 4a yields result {4, 2},
while changing 2b to 3b yields result ∅. Thus, we must include all of the colors in the input in the
annotation of the top-level of the result set, since the size of the set can be affected by changes to
any of these parts.

Most previous techniques have not attempted to deal with negation. One exception is Cui et al.
[2000]’s definition of lineage. In their approach, the lineage of tuple t ∈ R−S would be the tuple
t ∈ R and all tuples of S. While this is more concise in some cases, it is not dependency-correct
by our definition.

On the other hand, our approach can also be more concise than lineage in the presence of
negation, because lineage only deals with annotations at the level of records. For example, in
{1} − {π1(x) | x ∈ S}, our approach will indicate that the output does not depend on the
second components of elements of S, whereas the lineage of each tuple in the result of this query
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includes all the records in S. This difference can be substantial if there are many fields that are
never referenced; indeed, some scientific databases have tens or hundreds of fields per record,
only a few of which are needed for most queries.

Thus, although our approach to negation does exhibit pathological behavior in some cases, it
also provides more useful provenance for other typical queries. In any case all other approaches
either ignore negation or also have some pathological behavior. Developing more sophisticated
forms of dependence that are better-behaved in the presence of negation is an interesting area for
future work.

4.1. Correctness of dynamic tracking

In this section, we prove two correctness properties of dynamic tracking. First, we show that if
Γ � e : τ thenP[[e]] : A[[Γ]] → A[[τ ]] andP[[e]] � E [[e]], that is, the provenance semantics respects
the typing and the ordinary semantics of e. Second, and more importantly, we show that P[[e]]
is dependency-correct. We first establish useful auxiliary properties of the annotation-merging
operation v

+Φ and prove that the lifted operations such as �+ have appropriate types and enrich
the corresponding ordinary operations.

Lemma 4.1. Let v be an a-value and Φ an annotation. Then (1) |v+Φ| = |v| and (2) �v+Φ� =
�v� ∪ Φ.

Lemma 4.2. In the following, assume that v, v1, v2 are in the domains of the appropriate func-
tions.

1 �+: A[[int]]×A[[int]] → A[[int]] is color-invariant and |v1 �+ v2| = |v1|+ |v2|.
2 �� : A[[{int}]] → A[[int]] is color-invariant and |�

�
v| =

�
|v|.

3 �¬ : A[[bool]] → A[[bool]] is color-invariant and |�¬v| = ¬|v|.
4 �∧ : A[[bool]]×A[[bool]] → A[[bool]] is color-invariant and |v1 �∧ v2| = |v1| ∧ |v2|.
5 For any τ1, τ2 and i ∈ {1, 2} we have �πi : A[[τ1 × τ2]] → A[[τi]] is color-invariant and

|�πi(v)| = πi(|v|).
6 For any τ , we have �≈ : A[[τ ]]×A[[τ ]] → A[[bool]] is color-invariant and |v1 �≈ v2| = (|v1| ≈

|v2|).
7 For any τ , we have �cond : A[[bool]]×A[[τ ]]×A[[τ ]] → A[[τ ]] is color-invariant and | �cond(v, v1, v2)| =

if |v| then |v1| else |v2|.
8 For any τ , we have �∪ : A[[{τ}]] × A[[{τ}]] → A[[{τ}]] is color-invariant and |v1 �∪ v2| =

|v1| ∪ |v2|.
9 For any τ , we have �− : A[[{τ}]] × A[[{τ}]] → A[[{τ}]] is color-invariant and |v1 �− v2| =

|v1| − |v2|.
10 For any τ , we have �� : A[[{{τ}}]] → A[[{τ}]] is color-invariant and |�

�
v| =

�
|v|.

Proof. Most cases are immediate. The cases for sum (
�

) and flattening (
�

) rely on the cases
for binary addition and union.

The second part of the case of difference (9) is slightly involved. We reason as follows.

|wΦ1
1

�− w
Φ2
2 | = |{v | v ∈ w1, |v| �∈ |w2|}Φ1∪�w1�∪Φ2∪�w2�| = {|v| | v ∈ w1, |v| �∈ |w2|}

= {v | v ∈ |w1|, v �∈ |w2|} = |w1| − |w2|
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Lemma 4.3. If Γ � e : τ then P[[e]] : A[[Γ]] → A[[τ ]] is color-invariant and P[[e]] � E [[e]].

Proof. Proof is by induction on expressions e (which determine the structure of the typing
judgment). Most cases are straightforward, given Lemma 4.2; we show the case of comprehen-
sions.
— Case e = {e2 | x ∈ e1}:

Γ � e1 : {τ1} Γ, x:τ1 � e2 : τ2

Γ � {e2 | x ∈ e1} : {τ2}
First, by induction we have P[[e1]] : A[[Γ]] → A[[{τ1}]]. Hence w

Φ := P[[e1]]�γ is a set of
a-values in A[[τ1]]. So for each v �∈ P[[e1]]�γ, we have �γ� := �γ[x := v] ∈ A[[Γ, x:τ1]], hence
P[[e2]]�γ� ∈ A[[τ2]], and so

P[[{e2 | x ∈ e1}]]�γ = {P[[e2]]�γ[x := v] | v ∈ w}Φ ∈ A[[{τ2}]]

Furthermore, if α : color → {color}, then we have

α(P[[{e2 | x ∈ e1}]]�γ) = α({P[[e2]](�γ[x := v]) | v ∈ w}Φ)
= {α(P[[e2]](�γ[x := v])) | v ∈ w}α[Φ]

= {P[[e2]](α(�γ)[x := α(v)]) | v ∈ w}α[Φ]

= {P[[e2]](α(�γ)[x := v]) | v ∈ α(w)}α[Φ]

= {P[[e2]](α(�γ)[x := v]) | v �∈ α(w)α[Φ]}
= {P[[e2]](α(�γ)[x := v]) | v �∈ α(P[[e1]]�γ)}
= {P[[e2]](α(�γ)[x := v]) | v �∈ P[[e1]]α(�γ)}
= P[[{e2 | x ∈ e1}]]α(�γ)

where we appeal to the induction hypothesis to show thatP[[e1]] andP[[e2]] are color-invariant.
Hence P[[{e2 | x ∈ e1}]] is color-invariant.
Second, to show that P[[{e2 | x ∈ e1}]] � E [[{e2 | x ∈ e1}]], we have:

E [[{e2 | x ∈ e1}]]|�γ| = {E [[e2]]|(�γ|[x := v]) | v ∈ E [[e1]]|�γ|} = {E [[e2]]|(�γ|[x := v]) | v ∈ |P[[e1]]�γ|}
= {E [[e2]]|(�γ|[x := v]) | v ∈ |wΦ|} = {E [[e2]]|(�γ|[x := |v|]) | |v| ∈ |wΦ|}
= {E [[e2]]|(�γ|[x := |v|]) | v ∈ w} = {E [[e2]]|�γ[x := v]| | v ∈ w}
= {|P[[e2]](�γ[x := v])| | v ∈ w} = |{P[[e2]](�γ[x := v]) | v ∈ w}Φ|
= |{P[[e2]](�γ[x := v]) | v �∈ w

Φ}| = |{P[[e2]](�γ[x := v]) | v �∈ P[[e1]]�γ}|
= |P[[{e2 | x ∈ e1}]]�γ|

We now turn to dependency-correctness. SinceP[[e]] is defined in terms of the special annotation-
propagating operations introduced in Figure 5, we need to show that these operations are dependency-
correct. We first need to establish properties of ≡a:

Lemma 4.4.
1 If v ≡a v

� then a ∈ �v� ⇐⇒ a ∈ �v��.
2 If a �∈ �v� and v ≡a v

� then v = v
�.
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3 If v1 ≡a v2 then v
+Φ
1 ≡a v

+Φ
2 .

Proof. The first part is easy to establish by induction on derivations of ≡a, by noting that
a ∈ �v� ⇐⇒ a ∈ �v�� is equivalent to �v� ∩ {a} = �v�� ∩ {a} and reasoning equationally.

For the second part, note that the rule

a ∈ Φ1 ∩ Φ2

w
Φ1
1 ≡a w

Φ2
2

can never apply since a /∈ �wΦ1
1 � = �w1� ∪ Φ1 implies a �∈ Φ1 ∩ Φ2. The remaining rules

coincide with the rules for annotated value equality.
For the third part observe that both of the rules defining ≡a for annotated values are preserved

by adding equal sets of annotations to both sides.

We now state a key lemma which shows that all of the lifted operations are dependency-correct.
Many of the arguments are similar. In each case, if we know that the inputs to an operation are
≡a, we reason by cases on the structure of the derivation of≡a. If any of the assumptions v ≡a v

�

hold because a ∈ Φ ∩ Φ� for some pair of inputs v, v
�, then both outputs will also be annotated

with a. Otherwise, the inputs must have the same top-level structure, so in each case we have
enough information to evaluate the unlifted function and show that the results are still ≡a.

The proofs for equality and difference operations are slightly different. Both operations are
potentially global, that is, changes deep in the input values can affect the top-level structure
of the result (trivially for ≈, since there is no deep structure in the boolean result). This is,
essentially, why we need to include all of the annotations of the inputs in the result of an equality
or difference operation. We should point out that this inaccuracy is an area where we believe
improvement may be possible, through refining the definition of ≡a; but this is left for future
work.

Lemma 4.5. If v ≡a v
�, v1 ≡a v

�
1, v2 ≡ v

�
2 then:

1 v1 �+ v2 ≡a v
�
1

�+ v
�
2

2 ��v ≡a
��v

�

3 �¬v ≡a �¬v
�

4 v1 �∧ v2 ≡a v
�
1

�∧ v
�
2

5 �πi(v) ≡a �πi(v�)
6 v1 �≈ v2 ≡a v

�
1 �≈ v

�
2

7 �cond(v, v1, v2) ≡a
�cond(v�, v�1, v�2)

8 v1 �∪ v2 ≡a v
�
1

�∪ v
�
2

9 v1 �− v2 ≡a v
�
1

�− v
�
2

10 ��v ≡a
��v

�

Proof. For part (1), suppose vi = n
Φi
i and v

�
i = m

Ψi
i for i ∈ {1, 2}. There are four cases,

depending on the derivations of ni ≡a mi for i ∈ {1, 2}. If both derivations follow because
n

Φi
i = m

Ψi
i then P[[e]]�γ = (n1 + n2)Φ1∪Φ2 = (m1 + m2)Ψ1∪Ψ2 = P[[e]]�γ� so again P[[e]]�γ ≡a

P[[e]]�γ�. Otherwise one or both of the derivations follows because a ∈ Φi∩Ψi for i = 1 or i = 2.
Then a ∈ (Φ1 ∪ Φ2) ∩ (Ψ1 ∪Ψ2) so again P[[e]]�γ ≡a P[[e]]�γ�.

For part (2), there are two cases. If the summed sets are≡a because their top-level annotations

20



mention a, then the results of the sums will also mention a, so we are done. Otherwise, we must
have that the summed sets are of equal size and their elements are pairwise matched by ≡a;
hence, we can apply part (1) repeatedly (and then Lemma 4.5) to show that the results are ≡a.

Parts (3,4) are similar to part (1).
For part (5), suppose v = (v1, v2)Φ and v

� = (v�1, v�2)Φ
�
. Note that

�πi(v) = �πi(v1, v2)Φ = v
+Φ
i

and similarly �πi(v�) = (v�i)+Φ�
. There are two cases depending on the last step in the derivation

of v ≡a v
�. If a ∈ Φ ∩ Φ� then we are done since a will be in the top-level annotations of both

v
+Φ
i and (v�i)+Φ�

. Otherwise we must have vi ≡a v
�
i for i ∈ {1, 2}, so again v

+Φ
i ≡a (v�i)+Φ�

.
For part (6), there are two cases. If a ∈ (�v1� ∪ �v2�) ∩ (�v�1� ∪ �v�2�) then we are done.

Otherwise by Lemma 4.4, a cannot appear anywhere in v1, v2, v
�
1, v

�
2, so we must have v1 =

v
�
1, v2 = v

�
2. Hence (v1 �≈ v2) = (v�1 �≈ v

�
2) which implies the two sides are ≡a as well.

For part (7), suppose v = b
Φ
, v

� = (b�)Φ
�
. If a ∈ Φ∩Φ� then we are done since both condition-

als will have a in their top-level annotation. Otherwise we must have b = b
� so �cond(v, v1, v2) =

vi and �cond(v�, v�1, v�2) = v
�
i, so by induction (and Lemma 4.4) we are done.

For part (8), suppose vi = w
Φi
i and similarly for v

�
i. Again if a ∈ (Φ1 ∪ Φ2) ∩ (Φ�

1 ∪ Φ�
2)

then we are done. Otherwise we must have that w1 = {v11, . . . , v1n}, w
�
1 = {v�11, . . . , v�1n}

where v1i ≡a v
�
1i for each i ∈ {1, . . . , n}, and similarly for w2, w

�
2. Hence the elements of the

union of the two multisets can be matched up using the ≡a relation, so we can conclude that
w1 ∪ w2 ≡a w

�
1 ∪ w

�
2 as well. We must also have Φi = Φ�

i for each i ∈ {1, 2}, so we can
conclude that

v1 ∪ v2 = (w1 ∪ w2)Φ1∪Φ2 ≡a (w�
1 ∪ w

�
2)

Φ�
1∪Φ�

2 = v
�
1 ∪ v

�
2

For part (9), the reasoning is similar to part (6).
For part (10), the reasoning is similar to that for part (2), appealing to part (8) once we have

expanded to binary unions.

We conclude the section with the proof of dependency-correctness.

Theorem 4.1. If Γ � e : τ then P[[e]] is dependency-correct.

Proof. Suppose �γ ≡a �γ�. Again proof is by induction on the structure of expressions/typing
derivations. Many cases are immediate using the induction hypothesis and the corresponding
parts of Lemma 4.5. We show the remaining cases:
— Case e = x:

x:τ ∈ Γ
Γ � x : τ

By assumption P[[x]]�γ = �γ(x) ≡a �γ�(x) = P[[x]]�γ�.
— Case e = let x = e1 in e2:

Γ � e1 : τ1 Γ, x:τ1 � e2 : τ2

Γ � let x = e1 in e2 : τ2

By induction P[[e1]] and P[[e2]] are dependency-correct. Hence P[[e1]]�γ ≡a P[[e1]]�γ�, so
�γ[x := P[[e1]]�γ] ≡a �γ�[x := P[[e1]]�γ�]. It then follows by induction thatP[[e]]�γ = P[[e2]](�γ[x :=
P[[e1]]�γ]) ≡a P[[e2]](�γ�[x := P[[e1]]�γ�]) = P[[e]]�γ�.
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— Case e = (e1, e2):
Γ � e1 : τ1 Γ � e2 : τ2

Γ � (e1, e2) : τ1 × τ2

By induction, P[[e1]] and P[[e2]] are dependency-correct, so vi = P[[ei]]�γ ≡a P[[ei]]�γ� = v
�
i

for i ∈ {1, 2}. Hence we can immediately derive (v1, v2)∅ ≡a (v�1, v�2)∅.
— Case e = {e�}:

Γ � e
� : τ

Γ � {e�} : {τ}
By induction, P[[e�]] is dependency-correct, so v = P[[e�]]�γ ≡a P[[e�]]�γ� = v

�. Hence we can
immediately derive {v}∅ ≡a {v�}∅.

— Case e = {e2 | x ∈ e1}:
Γ � e1 : {τ1} Γ, x:τ1 � e2 : τ2

Γ � {e2 | x ∈ e1} : {τ2}
By induction,P[[e1]] andP[[e2]] are dependency-correct. Hence w

Φ1
1 = P[[e1]]�γ ≡a P[[e1]]�γ� =

(w�
1)Φ

�
1 . There are two cases. If a ∈ Φ1 ∩ Φ�

1 then we are done since P[[e]]�γ and P[[e]]�γ� will
both contain top-level annotations a. Otherwise, we must have

Φ1 = Φ�
1

v11 ≡a v
�
11 · · · v1n ≡a v

�
1n

w1 ≡a w
�
1

w
Φ1
1 ≡a (w�

1)Φ
�
1

where w1 = {v11, . . . , v1n} and similarly for w
�
1. Thus, for each i ∈ {1, . . . , n}, we have

�γ[x := v1i] ≡a �γ�[x := v
�
1i]. It follows that for some v2i and v

�
2i, we have v2i = P[[e2]](�γ[x :=

v1i]) ≡a P[[e2]](�γ[x := v
�
1i]) = v

�
2i for each i ∈ {1, . . . , n}. Thus, we can derive

Φ1 = Φ�
1

v21 ≡a v
�
21 · · · v2n ≡a v

�
2n

w2 ≡a w
�
2

w
Φ1
2 ≡a (w�

2)Φ
�
1

where

w
Φ1
2 = {P[[e2]](�γ[x := v]) | v ∈ w1}Φ1 = P[[{e2 | x ∈ e1}]]�γ

and similarly

(w�
2)

Φ�
1 = {P[[e2]](�γ�[x := v]) | v ∈ w1}Φ1 = P[[{e2 | x ∈ e1}]]�γ�

So we can conclude that P[[{e2 | x ∈ e1}]]�γ ≡a P[[{e2 | x ∈ e1}]]�γ�.
This exhausts all cases and completes the proof.

5. Static Provenance Analysis

Dynamic provenance may be expensive to compute and nontrivial to implement in a standard
relational database system. Moreover, dynamic analysis cannot tell us anything about a query
without looking at (annotated) input data. In a typical large database, most of the data is in sec-
ondary storage, so it is worthwhile to be able to avoid data access whenever possible. Moreover,
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even if we want to perform dynamic provenance tracking, a static approximation of depend-
ency information may be useful for optimization. In this section we consider a static provenance
analysis which statically approximates the dynamic provenance, but can be calculated quickly
without accessing the input.

We formulate the analysis as a type-based analysis [Palsberg, 2001]; annotated types (a-types)
�τ and raw types (r-types) ω are defined as follows:

�τ ::= ω
Φ

ω ::= int | bool | �τ × �τ � | {�τ}

We write �Γ for a typing context mapping variables to a-types. We lift the auxiliary a-value oper-
ations of erasure (|�τ |) and annotation extraction (��τ�) to a-types as follows:

|int| = int
|bool| = bool

|�τ1 × �τ2| = |�τ1| × |�τ2|
|{�τ}| = {|�τ |}
|ωΦ| = |ω|

�int� = ∅
�bool� = ∅

��τ1 × �τ2� = ��τ1� ∪ ��τ2�
�{�τ}� = ��τ�
�ωΦ� = �ω� ∪ Φ

Moreover, we define compatibility for a-types analogously to compatibility for values, that is,
�τ1 and �τ2 are compatible (�τ1

∼= �τ2) provided |�τ1| = |�τ2|. Also, we say that an a-type enriches
an ordinary type τ (written �τ � τ ) provided |�τ | = τ . These concepts are lifted to a-contexts �Γ
mapping variables to types in the obvious (pointwise) way.

We also define a merge operation � on compatible types as follows:

int � int = int
bool � bool = bool

(�τ1 × �τ2) � (�τ �1 × �τ �2) = (�τ1 � �τ �1)× (�τ2 � �τ �2)
{�τ} � {�τ �} = {�τ � �τ �}
ω

Φ1
1 � ω

Φ2
2 = (ω1 � ω2)Φ1∪Φ2

Finally, we write �τ � �τ � if �τ � = �τ � �τ �; this is a partial order on types and can be viewed as a
subtyping relation.

We interpret a-types �τ as sets of a-values �A[[�τ ]]. We interpret the annotations in a-types as
upper bounds on the annotations in the corresponding a-values:

�A[[int]] = {i | i ∈ Z}
�A[[bool]] = {b | b ∈ B}

�A[[�τ1 × �τ2]] = �A[[�τ1]]× �A[[�τ2]]
�A[[{�τ}]] = Mfin( �A[[�τ ]])
�A[[ωΦ]] = {wΨ | Ψ ⊆ Φ, w ∈ �A[[ω]]}

The syntactic operations |−|, �−�, � and � on types correspond to appropriate semantic opera-
tions on sets of a-values. We note some useful properties of these operations:

Lemma 5.1.
1 If v ∈ �A[[�τ ]] then v ∈ A[[|�τ |]] and |v| ∈ T [[|�τ |]] and �v� ⊆ ��τ�.
2 If �τ1

∼= �τ2 then �τ1��τ2 is defined and �A[[�τ1��τ2]] ⊇ �A[[�τ1]]∪ �A[[�τ2]] and ��τ1��τ2� = ��τ1�∪��τ2�.
3 If �τ1 � �τ2 then �A[[�τ1]] ⊆ �A[[�τ2]] and ��τ1� ⊆ ��τ2�.
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x:bτ ∈ bΓ
bΓ � x : bτ

bΓ � e1 : bτ1
bΓ, x : bτ1 � e2 : bτ2

bΓ � let x = e1 in e2 : bτ2

bΓ � i : int & ∅

bΓ � e1 : int & Φ1
bΓ � e2 : int & Φ2

bΓ � e1 + e2 : int & Φ1 ∪ Φ2

bΓ � e : {intΦ0} & Φ

bΓ � sum(e) : int & Φ0 ∪ Φ

bΓ � b : bool & ∅
bΓ � e : bool & Φ

bΓ � ¬e : bool & Φ

bΓ � e1 : bool & Φ1
bΓ � e2 : bool & Φ2

bΓ � e1 ∧ e2 : bool & Φ1 ∪ Φ2

bΓ � e1 : bτ1
bΓ � e2 : bτ2

bΓ � (e1, e2) : (bτ1 × bτ2) & ∅

bΓ � e : ωΦ1
1 × ωΦ2

2 & Φ

bΓ � πi(e) : ωi & Φi ∪ Φ
(i ∈ {1, 2})

bΓ � e1 : bτ1
bΓ � e2 : bτ2 bτ1

∼= bτ2

bΓ � e1 ≈ e2 : bool & �bτ1� ∪ �bτ2�

bΓ � e0 : bool & Φ0
bΓ � e1 : bτ1

bΓ � e2 : bτ2 bτ1
∼= bτ2

bΓ � if e0 then e1 else e2 : (bτ1 � bτ2)
+Φ0

bΓ � ∅ : {bτ} & ∅
bΓ � e : bτ

bΓ � {e} : {bτ} & ∅

bΓ � e1 : {bτ1} & Φ1
bΓ � e2 : {bτ2} & Φ2 bτ1

∼= bτ2

bΓ � e1 ∪ e2 : {bτ1 � bτ2} & Φ1 ∪ Φ2

bΓ � e1 : {bτ1} & Φ1
bΓ, x:bτ1 � e2 : ω & Φ2

bΓ � {e2 | x ∈ e1} : {ωΦ2} & Φ1

bΓ � e : {{bτ}Φ2} & Φ1

bΓ �
S

e : {bτ} & Φ1 ∪ Φ2

bΓ � e1 : {bτ1} & Φ1
bΓ � e2 : {bτ2} & Φ2 bτ1

∼= bτ2

bΓ � e1 − e2 : {bτ1} & �{bτ1}Φ1� ∪ �{bτ2}Φ2�

Fig. 8. Type-based static provenance analysis

Figure 8 shows the annotated typing judgment �Γ � e : �τ (sometimes written �Γ � e : ω & Φ
for readability, provided �τ = ω

Φ), which extends the plain typing judgment shown in Figure 2.

Proposition 5.1. The judgment Γ � e : τ is derivable if and only if for any �Γ � Γ, there exists
a �τ � τ such that �Γ � e : �τ . Moreover, given Γ � e : τ and �Γ � Γ, we can compute �τ in
polynomial time (by a simple syntax-directed algorithm).

Example 5.1. Consider an annotated type context �Γ, shown in Figure 9(a), where we have an-
notated field values A,B, C, D, E with colors a, b, c, d, e respectively. Figure 9(b) shows the
results of static analysis for the queries in Figure 7. In some cases, the type information simply
reflects the field names which are present in the output. However, the colors are not affected by
renamings, as in ρA/C,B/D. Furthermore, note that (if we replace the colors a, b, c, d, e with color
sets {a1, a2, a3}, etc.) in each case the type-level colors safely over-approximate the value-level
colors calculated in Figure 7.

Example 5.2. To further illustrate the analysis, we consider an extended example for a query
that performs grouping and aggregation (equivalent to the one in Example 4.2):

Q(R) = {(π1(x), sum(G(x))) | x ∈ R}
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(a)
bΓ = [R : {(A : inta, B : intb)}, S : {(C : intc, D : intd, E : inte)}]

(b)

bΓ � ΠA(R) : {(A : inta)}
bΓ � σA=B(R) : {(A : inta, B : intb)}a,b

bΓ � R× S : {(A : inta, B : intb, C : intc, D : intd, E : inte)}
bΓ � ΠBE(σA=D(R× S)) : {(B : intb, E : inte)}a,d

bΓ � R ∪ ρA/C,B/D(ΠCD(S)) : {(A : inta,c, B : intb,d)}
bΓ � R− ρA/D,B/E(ΠDE(S)) : {(A : inta, B : intb)}a,b,d,e

bΓ � sum(ΠA(R)) : inta

bΓ � count(R) : int

bΓ � count(σA=B(R)) : inta,b

Fig. 9. (a) Annotated input context (b) Examples of provenance analysis

where we employ the following abbreviations:

G(x) :=
�
{if π1(y) ≈ π1(x) then {π2(y)} else ∅ | y ∈ R}

�τR := inta × intb

�Γ := R:{�τR}
�Γ1 := �Γ, x:�τR

�Γ2 := �Γ1, y:�τR

We will derive �Γ � Q(R) : {inta × inta,b}. The derivation illustrates how color a is propagated
to both parts of the result type, while color b is only propagated to the second column.

First, we can reduce the analysis of Q to analyzing G(x) as follows:

�Γ � R : {�τR}

�Γ1 � x : �τR

�Γ1 � π1(x) : inta

�Γ1 � G(x) : {intb}a

�Γ1 � sum(G(x)) : inta,b

�Γ1 � (π1(x), sum(G(x))) : inta × inta,b

�Γ � {(π1(x), sum(G(x))) | x ∈ R} : {inta × inta,b}

We next reduce the analysis of G(x) to an analysis of the conditional inside G(x):

�Γ1 � R : {�τR} �Γ2 � if π1(y) ≈ π1(x) then {π2(y)} else ∅ : {intb}a

�Γ1 � {if π1(y) ≈ π1(x) then {π2(y)} else ∅ | y ∈ R} : {{intb}a}
�Γ1 �

�
{if π1(y) ≈ π1(x) then {π2(y)} else ∅ | y ∈ R} : {intb}a
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Finally, we can analyze the conditional as follows:

�Γ2 � y : �τR

�Γ2 � π1(y) : inta

�Γ2 � x : �τR

�Γ2 � π1(x) : inta

�Γ2 � π1(y) ≈ π1(x) : boola

�Γ2 � y : �τR

�Γ2 � π2(y) : intb

�Γ2 � {π2(y)} : {intb} �Γ2 � ∅ : {int}
�Γ2 � if π1(y) ≈ π1(x) then {π2(y)} else ∅ : {intb}a

5.1. Correctness of static analysis

The correctness of the analysis is proved with respect to the provenance-tracking semantics given
in Section 4, which we have already shown dependency-correct. Correctness is formulated as
a type-soundness theorem, using the refined interpretation �A[[−]] of a-types. Specifically, we
show that if �Γ � e : �τ then P[[e]] : �A[[�Γ]] → �A[[�τ ]]. Theorem 5.2 immediately implies that the
annotations we obtain (statically) by provenance analysis conservatively over-approximate the
dependency-correct annotations we obtain (dynamically) by provenance tracking provided the
initial value �γ matches �A[[�Γ]].

We first establish that the static analysis is a conservative extension of the ordinary type sys-
tem:

Lemma 5.2. If Γ � e : τ then for any �Γ � Γ there exists a �τ � τ such that �Γ � e : �τ .

Proof. Structural induction on derivations; again the only interesting steps are those involving
compatibility side-conditions. Typically we only need to observe that if �τ1, �τ2 � τ then �τ1

∼= �τ2,
so �τ1 � �τ2 exists and �τ1

∼= �τ2
∼= �τ1 � �τ2.

Lemma 5.3. If �Γ � e : �τ then |�Γ| � e : |�τ |.

Proof. Straightforward induction on derivations; cases with compatibility side-conditions re-
quire observing that by definition �τ1

∼= �τ2 ⇐⇒ |�τ1| = |�τ2|.

Lemma 5.4. Every context Γ has at least one distinctly-annotated enrichment �Γ � Γ.

Proof. Observe that any type can be lifted to an a-type by annotating each part of it with ∅.
An unannotated context Γ can be lifted to a default annotated context �Γ by lifting each type.

Theorem 5.1. The judgment Γ � e : τ is derivable if and only if for any �Γ enriching Γ, there
exists a �τ enriching τ such that �Γ � e : �τ is derivable for some �τ enriching τ .

Proof. For the forward direction, we use Lemma 5.2. For the reverse direction, suppose the
second part holds for a given Γ, e, τ . By Lemma 5.4, we have �Γ � e : �τ for some �Γ enriching Γ
and �τ enriching τ . Hence by Lemma 5.3, we have |�Γ| � e : |�τ |, but clearly |�Γ| = Γ and |�τ | = τ .

We next establish useful properties of the a-value operations with respect to the semantics of
annotated types:

Lemma 5.5. For any Φ,Ψ,Φ1,Φ2, �τ , �τ1, �τ2:

1 �+: �A[[intΦ]]× �A[[intΨ]] → �A[[intΦ∪Ψ]].
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2 ��: �A[[{intΦ}Ψ]] → �A[[intΦ∪Ψ]].
3 �¬ : �A[[boolΦ]] → �A[[boolΦ]].
4 �∧: �A[[boolΦ]]× �A[[boolΨ]] → �A[[boolΦ∪Ψ]].
5 �πi : �A[[(�τ1 × �τ2)Φ]] → �A[[�τ+Φ

i ]] for any i ∈ {1, 2}
6 �≈: �A[[�τ1]]× �A[[�τ2]] → �A[[bool�bτ1�∪�bτ2�]].
7 If �τ1

∼= �τ2 then �cond : �A[[boolΦ]]× �A[[�τ1]]× �A[[�τ2]] → �A[[(�τ1 � �τ2)+Φ]]
8 If �τ1

∼= �τ2 then �∪ : �A[[{�τ1}Φ1 ]]× �A[[{�τ2}Φ2 ]] → �A[[{�τ1 � �τ2}Φ1∪Φ2 ]].
9 If �τ1

∼= �τ2 then �− : �A[[{�τ1}Φ1 ]]× �A[[{�τ2}Φ2 ]] → �A[[{�τ1}Φ1∪�bτ1�∪Φ2∪�bτ2�]].
10 �� : �A[[{{�τ}Ψ}Φ]] → �A[[{�τ}Φ∪Ψ]].

Proof. All of the properties are immediate from the definitions of the operations.

Theorem 5.2. If �Γ � e : �τ then P[[e]] : �A[[�Γ]] → �A[[�τ ]].

Proof. The proof is by induction on the structure of expressions (and the associated anno-
tated derivations). As before, many of the cases follow immediately by induction and appeals to
Lemma 5.5.

— Case e = x:
x:�τ ∈ �Γ
�Γ � x : �τ

Note that P[[x]]�γ = �γ(x) ∈ �A[[�τ ]] since �γ ∈ �A[[�Γ]].
— Case e = (let x = e1 in e2):

�Γ � e1 : �τ1
�Γ, x:�τ1 � e2 : �τ2

�Γ � let x = e1 in e2 : �τ2

By induction on the first subderivation, we have P[[e1]]�γ ∈ �A[[�τ1]]. Hence �γ[x := P[[e1]]�γ] ∈
�A[[�Γ, x:�τ1]], so by induction on the second subderivation, we have P[[e]]�γ = P[[e2]]�γ([x :=
P[[e1]]�γ]) ∈ �A[[�τ2]]

— Case e = (e1, e2):
�Γ � e1 : �τ1

�Γ � e2 : �τ2

�Γ � (e1, e2) : (�τ1 × �τ2) & ∅
By induction, P[[ei]]�γ ∈ �A[[�τi]]. Thus (P[[e1]]�γ,P[[e2]]�γ)∅ ∈ �A[[(�τ1 × �τ2)∅]]

— Case e = {e�}: Similar to the case for pairing.
— Case e = {e2 | x ∈ e1}:

�Γ � e1 : {�τ1} & Φ1
�Γ, x:�τ1 � e2 : �τ2

�Γ � {e2 | x ∈ e1} : {�τ2} & Φ1

Let w
Ψ = P[[e1]]�γ; then by induction w

Ψ ∈ �A[[{�τ1}Φ1 ]] and so w ∈ �A[[{�τ1}]] and Ψ ⊆ Φ1.
Hence for each v ∈ w, we have v ∈ �A[[�τ1]], so �γ[x := v] ∈ �A[[�Γ, x:�τ1]]. Thus, for each such
v, by induction we have P[[e2]](�γ[x := v]) ∈ �A[[�τ2]]. Moreover, P[[e]]�γ = {P[[e2]](�γ[x :=
v]) | v �∈ w

Ψ} = {P[[e2]](�γ[x := v]) | v ∈ w}Ψ ∈ �A[[{�τ2}Φ1 ]] since Ψ ⊆ Φ1.
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6. Discussion

We chose to study provenance via the NRC because it is a clean and system-independent core
calculus similar to other functional programming languages for which dependence analysis is
well-understood. We believe our results can be specialized to common database implementa-
tions and physical operators without much difficulty. We have not yet investigated scaling this
approach to large datasets or incorporating it into standard relational databases.

We have, however, implemented a prototype NRC interpreter that performs ordinary type-
checking and evaluation as well as provenance tracking and analysis. Our prototype currently
displays the input and output tables using HTML and uses embedded JavaScript code to high-
light backward slices, that is, the parts of the input on which the selected part of the output may
depend, according to the analysis. Similarly, the system displays the type information inferred
for the query and uses the results of static analysis to highlight relevant parts of the input types
for a selected part of the output type.

In the worst (albeit unusual) case, a part of the output could be reported as depending on every
part of the input, as a result of spurious dependencies. For example, this is the case for a query
such as (R1−R1)∪· · ·∪(Rn−Rn)∪e. Of course, this query is equivalent to e and a good query
optimizer will recognize this. However, for non-pathological queries encountered in practice, our
analysis appears to be reasonably accurate. Even so, typically the structure of the output depends
on a large set of locations, such as all of the fields in several columns in the input used in a
selection condition; individual fields in the output usually also depend on a smaller number
of places from which their values were computed or copied. Thus, implementing provenance
tracking in a large-scale database may require developing more efficient representations for large
sets of annotations, especially in the common case where a part of the output depends on every
value in a particular column.

The model we investigate in this article is similar to that of Buneman et al. [2008b] in many
respects. There are two salient differences. The first difference is that Buneman et al. [2008b]
propagates annotations comprising single (optional) input locations, whereas our approach prop-
agates annotations consisting of sets of input locations. The second difference is that our ap-
proach provides a strong semantic guarantee formulated in terms of dependence, whereas in
contrast the semantics of where-provenance in Buneman et al. [2008b] is an ad hoc syntactic
definition justified by a database-theoretic expressiveness result, not a dependency property.

Of these differences, the second is more significant. Their results characterize the possible
where-provenance behavior of queries and updates precisely, but tell us little about what might
happen if the input is changed. Moreover, their expressiveness results have not yet been extended
to handle features such as primitive operations on data values and aggregation. To illustrate the
distinction, observe that in the example in Figure 1, the Name fields are copied from the input to
the output (thus, they have where-provenance in Buneman et al.’s model) but the AvgMW fields
are computed from several sources, not copied (thus, they would have no where-provenance, even
though they depend on many parts of the input). We believe the approaches are complementary:
each does something useful that the other does not, and in general users may want both kinds of
provenance information to be available.

Buneman et al. [2008b] discuss implementing provenance tracking as a source-to-source trans-
lation from NRC queries to NRC extended with a new base type color. The idea is to translate
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ordinary types to types in which each subexpression is paired with an annotation of type color,
and translate provenance-tracking queries to ordinary NRC queries over the annotated types that
explicitly manage the annotations. This implementation approach has the potential advantage
that we can re-use existing query optimization techniques for NRC. A similar query-translation
approach should be possible for dependency provenance, by explicitly annotating each part of
each value with a set of annotations {color} and using NRC set operations to propagate colors.

Most database systems implement the SQL query language, which does not provide the ability
to nest sets as the field values of relations. Nevertheless, it should still be possible to support some
annotation-propagation operations within ordinary SQL databases. Suppose we are interested in
a particular application in which annotations are numerical timestamps or quality rankings that
can be aggregated (e.g. by taking the minimum or maximum). In this case, we can propagate the
annotations from the source data to the results according to the provenance semantics. Simple
SQL queries can easily be translated to equivalent SQL queries that automatically aggregate
annotations in this way, using techniques similar to those used in the DBNotes system [Bhagwat
et al., 2005].

For example, consider the query

SELECT A, SUM(B) FROM R GROUP BY A

over relations R : {(A : int, B : int)}. Suppose we have relations R : {(A : int, Aq : int, B :
int, Bq : int)}, in which each field A,B has an accompanying quality rating Aq, Bq. Then we
can translate the above SQL query to

SELECT A, MIN(A_q), SUM(C), MIN(C_q) FROM R GROUP BY A

to associate each value in the output with the minimum quality ranking of the contributing
fields—thus, data in the result with a high quality ranking must depend only on high-quality
data. However, performing this translation for general SQL queries appears nontrivial. It is well
known that flat NRC queries whose input and output types are flat and which do not use group-
ing or aggregation can be translated to SQL via a normalization process [Wong, 1996], but it
is apparently not well-understood how to extract SQL queries from arbitrary NRC expressions
involving grouping and aggregation.

We can easily implement static provenance tracking for ordinary SQL queries by translating
them to NRC; this does not require changing the database system in any way, since we do not
need to execute the queries. Static provenance analysis is slightly more expensive than ordinary
typechecking, but since the overhead is proportional only to the size of the schema and query, not
the (usually much larger) data, this overhead is minor. Moreover, static analysis may be useful
in optimizing provenance tracking, for example by using the results of static analysis to avoid
tracking annotations that are statically irrelevant to the output.

Consider for example the following scenario: After running a query, the user identifies an er-
ror in the results, and requests a data slice showing the input parts relevant to the error. We can
first provide the results of static provenance analysis and show the user which parts of the input
database contain data that may have contributed to the error. In a typical relational database, this
would narrow things down to the level of database tables and columns, which may be enough
for the user to fix the problem. In case this is not specific enough, however, we can still employ
the static analysis to speed computing the dynamic provenance. Using the static provenance in-
formation, we know that only locations in the input data that correspond to the static provenance
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of the output location of interest can contribute to that output location. Hence, if we are only
interested in the dynamic provenance of a single output location, we might avoid the overhead
of dynamically tagging and tracking provenance for parts of the input that we know cannot con-
tribute to the output part of interest. We plan to investigate this potential optimization technique
in future work.

6.1. Comparison with slicing, information flow and other dependence analyses

The techniques in Section 4 and Section 5 draw upon standard techniques in static analysis [Niel-
son et al., 2005, Palsberg, 2001]. In particular, the idea of instrumenting the semantics of pro-
grams with labels that capture interesting dynamic properties is a well-known technique used
in control-flow analysis and information flow control. Moreover, it appears possible to cast our
results in the abstract interpretation framework [Cousot and Cousot, 1977] that is widely used
in static analysis (see e.g. Nielson et al. [2005, ch. 4] for an introduction). Doing so would re-
quire adapting abstract interpretation to handle collection types. This does not appear difficult
but we preferred to keep the development in this article elementary in order to remain accessible
to nonspecialists.

Dependence tracking and analysis have been shown to be useful in many contexts such as pro-
gram slicing, information-flow security, incremental update of computations, and memoization
and caching. A great deal of work has been done on each of these topics. We focus on contrasting
our work with the most closely related work in these areas.

In program slicing [Biswas, 1997, Field and Tip, 1998, Weiser, 1981], the goal is to identify
a (small) set of program points whose execution contributes to the value of an output variable
(or other observable behavior). This is analogous to our approach to provenance, except that
provenance identifies relevant parts of the input database, not the program (i.e. query). Cheney
[2007] discusses the relationship between program slicing and dependency analysis at a high
level, complementing the technical details presented in this article.

In computer security, it is often of interest to specify and enforce information-flow poli-
cies [Sabelfeld and Myers, 2003] that ensure that information marked secret can only be read
by privileged users, and that privileged users cannot leak secret information by writing it to pub-
lic locations. These properties are sometimes referred to as secrecy and integrity, respectively.
Both can be enforced using static (e.g. [Myers, 1999, Volpano et al., 1996] or dynamic (e.g.
[Shroff et al., 2008]) dependency tracking techniques. Our work is closely related to ideas in
information flow security, but our goal is not to prevent unauthorized disclosure but instead to
explicate the dependencies of the results of a query on its inputs. Nevertheless there are many
interesting possible connections that need to be explored, particularly in relating provenance to
dynamic information flow tracking [Shroff et al., 2008] and integrating provenance security poli-
cies with other access-control, information-flow and audit policies [Swamy et al., 2008, Jia et al.,
2008].

In contrast to most work on static analysis and information flow security, we envision the
instrumented semantics actually being used to provide feedback to users, rather than only as the
basis for proving correctness of a static analysis or preventing security vulnerabilities. This makes
our approach closest to (dynamic) slicing. The novelty of our approach with respect to slicing is
that we handle a purely functional, terminating database query language and focus on calculating
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dependencies and slicing information having to do with the (typically large) input data, not the
(typically small) query. On the one hand the absence of side-effects, higher-order functions,
nontermination, or high-level programming constructs such as objects and modules simplifies
some technical matters considerably, and enables more precise information to be tracked; on the
other, the presence of collection types and query language constructs leads to new complications
not handled in prior work on information flow, slicing or static analysis.

In self-adjusting computation [Acar et al., 2008, Acar, 2009], support for efficient incremental
recomputation is provided at a language level. Programs are executed using an instrumented se-
mantics that records their dynamic dependencies in a trace. Although the first run of the program
can be more expensive, subsequent changes to the input can be propagated much more efficiently
using the trace. We are currently investigating further applications of ideas from self-adjusting
computation to provenance, particularly the use of traces as explanations.

Dependency tracking is also important in memoization and caching techniques [Abadi et al.,
1996, Acar et al., 2003]. For example, Abadi et al. [1996] study an approach to caching the results
of function calls in a software configuration management system, based on a label-propagating
operational semantics. Acar et al. [2003] develop a language-based approach to memoizing and
caching the results of functional programs. Our work differs from this work in that we contem-
plate retaining dependency information as an aid to the end-user of a (database) system, not just
as an internal data structure used for improving performance.

Our approach to provenance tracking based on dependency analysis has been used in the Fable
system [Swamy et al., 2008]. In this work provenance is one of a large class of security policies
that can be implemented using Fable, a dependently-typed language for specifying security poli-
cies. Subsequently, Swamy et al. [2009] have explored a theory of typed coercions that can be
used to implement dependency provenance.

Abadi et al. [1999] argue that techniques such as slicing, information-flow security, and other
program analyses such as binding-time analysis can be given a uniform treatment by translating
to a common Dependency Core Calculus. We believe provenance may also fit into this picture,
but in this article, we considered both dynamic and static labeling, whereas the Dependency Core
Calculus only allows for static labels. Another difference is that the Dependency Core Calculus
is a higher-order, typed lambda-calculus whereas here we have considered the first-order nested
relational calculus. It would be interesting to develop a common calculus that can handle both
static and dynamic dependence and both higher-order functions and collections, particularly if
dynamic information flow and dynamic slicing could also be handled uniformly.

7. Conclusions

Provenance information that relates parts of the result of a database query to relevant parts of the
input is useful for many purposes, including judging the reliability of information based on the
relevant sources and identifying parts of the database that may be responsible for an error in the
output of a query. Although a number of techniques based on this intuition have been proposed,
some are ad hoc while others have proven difficult to extend beyond simple conjunctive queries
to handle important features of real query languages such as grouping, aggregation, negation and
built-in operations.

We have argued that the notion of dependence, familiar from program slicing, information flow
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security, and other program analyses, provides a solid semantic foundation for understanding
provenance for complex database queries. In this article we introduced a semantic characteriza-
tion of dependency provenance, showed that minimal dependency provenance is not computable,
and presented approximate tracking and analysis techniques. We have also discussed applications
of dependency provenance such as computing forward and backward data slices that highlight
dependencies between selected parts of the input or output. We have implemented a small-scale
prototype to gain a sense of the usefulness and precision of the technique.

We believe there are many promising directions for future work, including implementing ef-
ficient practical techniques for large-scale database systems, identifying more sophisticated and
useful dependency properties, and studying dependency provenance in other settings such as
update languages and workflows.
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