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1 The limitations of direct translation

So far we have been building translations that preserve control flow. That is, the control flow in the target
language corresponds directly to control flow in the source. This makes it difficult to describe language fea-
tures that involve non-local control flow, such as errors, exceptions, goto, break, continue, and tail recursion.
All of these features violate the simple stack-like control flow of the lambda calculus, which comes from the
fact that functions impose a call/return discipline. To do a better job of capturing non-local control flow,
we go beyond functions to continuations.

We will see that because continuations expose control explicitly, they make a good intermediate language
for compilation, because control is exposed explicitly in machine language as well. (We can show this by
writing a translation from uML to a language similar to assembly. Doing such a translation would give
us a fairly complete recipe for compiling any of the languages we have talked about in class down to the
hardware.)

2 Continuations

Consider the statement if x ≤ 0 then x else x + 1. Using evaluation contexts, we can separate the redex
from the rest of the expression:

(if [·] then x else x + 1)[x ≤ 0]

Of course, we have another way of performing subsitution: β-reduction. We can also write this as:

(λy. if y then x else x + 1) (x ≤ 0)

To evaluate this, we would first evaluate the argument x ≤ 0 to obtain a boolean value, then apply the
function λy. if y then x else x + 1 to this value. This function captures an evaluation context as an explicit,
separate term. The function λy. if y then x else x + 1 is called a continuation, because it specifies what is
to be done with the result of the current computation in order to continue the computation.

We can perform this kind of transformation on every evaluation context in the program. The result will
be a term in continuation-passing style (CPS). Because it makes transfers of control explicit, CPS is a better
target language when we want to capture more complex ways to transfer control.

3 Continuation-passing style

We can define a version of the lambda calculus that syntactically enforces continuation-passing style.
Recall that our grammar for the λ-calculus was:

e ::= x | λx. e | e0 e1
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Our grammar for the CPS λ-calculus will be:

v := x | λx1 . . . xn. e e ::= v0 v1 · · · vn

This is a highly constrained syntax. Barring reductions inside the scope of a λ-abstraction operator, the
expressions v are all irreducible. The only reducible expression is v0 v1 · · · vn. In fact, we will only use n = 1
and n = 2 to get the full expressive power of the lambda calculus. When n = 1, we have a continuation. We
will use n = 2 to model source-language functions.

The small-step semantics is particularly simple. It has a single rule for β reduction:

(λx1 . . . xn. e) v1 . . . vn −→ e{vi/xi}(i∈1..n)

Notice that we do not need any evaluation contexts! The syntax ensures that if there is a β redex, it is at
the top level.

The big-step semantics is also simple, with only a single rule:

e{vi/xi}(i∈1..n) ⇓ v′

(λx1 . . . xn. e) v1 . . . vn ⇓ v′.

The resulting proof tree will not be tree-like. The rule has one premise, so a proof will be a stack of rule
instances, each one corresponding exactly to a step in the small-step semantics. In other words, the big- and
small-step semantics correspond exactly.

Both semantics lead us to build an interpreter that runs a loop performing reductions, and does not need
to make recursive calls. The fact that we can build a simpler interpreter for the language is a strong hint
that this language is lower-level than the lambda calculus. Because it is lower-level (and actually closer to
assembly code), CPS is typically used in functional language compilers as an intermediate representation. It
also is a good code representation if one is building an interpreter,

6 CPS conversion

Despite restricting the syntax in CPS, we haven’t lost expressive power. Given a λ-calculus expression e, it is
possible to define a translation [[e]] that translates it into CPS. This translation is known as CPS conversion.
It was developed as part of Steele’s Rabbit Scheme compiler, but was described earlier by Reynolds.

The translation takes an arbitrary λ-term e and produces a CPS term [[e]] which is a function taking a
continuation as argument. Intuitively, [[e]]k applies k to the result of e. We can think of a continuation as
a drop box that expects a result and sends it on its way through the rest of the computation—but never
returns.

We want our translation to satisfy e
∗−→

CBV
v ⇐⇒ [[e]]k ∗−→

CPS
[[v]]k for primitive values v and any variable

k /∈ FV (e), and e ⇑CBV⇔ [[e]]k ⇑CPS .
One challenge is how to translate functions into CPS. Since all control transfers must be explicit appli-

cations of continuations, we must make the return from a function call explicit as a distinct continuation.
Therefore, we represent a function λx. · · · in CPS form as a function that takes an explicit continuation
argument: λkx. ·. The argument k corresponds to the return address to which the function will return.

Using this insight, the translation is as follows:

[[x]]k = k x

[[λx. e]]k = k (λk′x. [[e]]k′)
[[e0 e1]]k = [[e0]](λf. [[e1]](λv. f k v))

(Here we have defined [[e]] in the style of ML; thus [[e]]k = e′ really means [[e]] = λk. e′.)
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6.1 An example

In λCBV , we have

(λxy. x) 1 → λy. 1

Let’s evaluate the CPS-translation of the left-hand side using the CPS evaluation rules. Note that we
translate integers and other simple values just like we do variables:

[[n]]k = k V[[n]] = k n

Converting to CPS, we get:

[[(λxy. x) 1]]k = [[λx.λy. x]](λf. [[1]](λv. f k v))
= (λf. [[1]](λv. f k v))(λk′x. [[λy. x]]k′)
= (λf. (λv. f k v) 1)(λk′x. [[λy. x]]k′)
= (λf. (λv. f k v) 1)(λk′x. k′ (λk′′y. k′′ x))
−→ (λv. (λk′x. k′ (λk′′y. k′′ x)) k v) 1
−→ (λk′x. k′ (λk′′y. k′′ x)) k 1
−→ k (λk′′y. k′′ 1)
= [[λy. 1]]k
= k V[[λy. 1]]
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