
1 Untyped ML (uML)

Let’s use the idea of semantics by translation for a richer language, one we might actually like to program
in. We augment the λ-calculus with some more conventional programming constructs We call this language
uML since it resembles ML, with the “u” standing for “untyped”1. We’ll give semantics for this language
in two ways, first through a structural operational semantics, and second through a translation to the CBV
λ-calculus.

In addition to lambda abstractions, we also introduce pairs (e1, e2), numbers n, booleans, and a value
null corresponding to ML () or Java null.

1.1 Expressions

e ::= λx1 . . . xn. e | e0 . . . en | x | n | true | false | null

| let x = e1 in e2 | if e0 then e1 else e2

| (e1, e2) | let (x, y) = e1 in e2

| letrec f1 = λx1. e1 and . . . and fn = λxn. en in e

1.2 Values

v ::= λx1 . . . xn. e | n | true | false | null | (v1, v2)

1.3 Evaluation Contexts

We define evaluation contexts so that evaluation is left-to-right and deterministic:

E ::= [·] | v0 . . . vm E em+2 . . . en | #n E

| if E then e1 else e2

| let x = E in e

| (E, e) | (v,E)

Note that there are no holes on the right-hand side of if because it evaluates the consequent and alternative
expressions lazily. Even in an eager, call-by-value language, we want some laziness.

The structural congruence rule takes the usual form:

e −→ e′

E[e] −→ E[e′]

1uML is not to be confused with UML, the Unified Modeling Language

1

CSCI B522 Lecture 9 A strongly typed functional language 1 Oct, 2009

Lecture notes for CS 6110 (Spring’09) taught by Andrew Myers at Cornell; edited by Amal Ahmed, Fall’09.

1

1.4 Reductions

(λx1 . . . xn. e) v1 . . . vn −→ e{v1/x1}{v2/x2} . . . {vn/xn}
v1 ⊕ v2 −→ v3 if n3 = n1 ⊕ n2, where ⊕ represents the corresponding mathematical operation.

#1 (v1, v2) −→ v1

#2 (v1, v2) −→ v2

if true then e1 else e2 −→ e1

if false then e1 else e2 −→ e2

let x = v in e −→ e{v/x}
letrec . . . −→ to be continued

We can already see that there will be problems with establishing soundness. For example, what happens
with the expression if 3 then 1 else 0? The evaluation is stuck, because there is no reduction rule that
applies to this term. Unlike in the lambda calculus, not all terms work in all contexts. We don’t have an
explicit notion of “type” in this language; the types are simply the different kinds of expression forms that
can appear on the left-hand-side of the various reduction rules. Nevertheless, we consider expressions that
are stuck to contain a run-time type error.

1.5 Translating uML to the CBV λ-Calculus

To capture the semantics of uML, we can also translate it to the call-by-value lambda calculus. We define
some of the translation rules:

[[λx1 . . . xn. e]] = λx1 . . . xn. [[e]]
[[e0 . . . en]] = [[e0]] [[e1]] [[e2]] . . . [[en]]

[[x]] = x

[[n]] = n = λfx. fnx

[[null]] = I

[[true]] = λxy. x I

[[false]] = λxy. y I

[[if e0 then e1 else e2]] = [[e0]] (λz. [[e1]]) (λz. [[e2]]).

Notice that we implement booleans by combining our earlier lambda-calculus implementation of booleans
with the delayed-evaluation trick employed in the translation from CBN to CBV lambda calculus.

Let us consider the translation of pairs. We have already seen how to represent pairs in the λ-calculus
using functions PAIR, FIRST, and SECOND, with the following properties:

FIRST (PAIR e1 e2) = e1

SECOND (PAIR e1 e2) = e2

PAIR (FIRST e) (SECOND e) = e

Using these constructs, we can define the translation from pairs to λCBV straightforwardly as follows:

[[(e1, e2)]] = PAIR [[e1]] [[e2]] = λf. f [[e1]] [[e2]]
[[let (x, y) = e1 in e2]] = e1 (λxy. e2) (using the properties of PAIR)

2

For let expressions, we define

[[let x = e1 in e2]] = (λx. [[e2]]) [[e1]].

Now comes the last of our uML constructs, letrec:

letrec f1 = λx1. e1 and . . . and fn = λxn. en in e.

This construct allows us to define mutually recursive functions, each of which is able to call itself and
other functions defined in the same letrec block. We consider only case n = 1, saving the general case for
later when we have a translation with better control over naming. Recall that, using the Y -combinator,
we can produce a fixpoint Y (λf. λx. e) of λf. λx. e. We can think of Y (λf. λx. e) as a recursively-defined
function f such that f = λx. e, where the body e can refer to f . Then we define

[[letrec f = λx. e1 in e2]] = (λf. [[e2]]) (Y (λf. [[λx. e1]])).

2 Strong Typing

Revisiting our earlier example, if 3 then 1 else 0, we see that the translation to CBV is not sound, because
its image [[if 3 then 1 else 0]] reduces to a value under the CBV rules—there is no way for a closed term to
get stuck in the CBV or CBN λ-calculus, as we proved previously. However, this value does not correspond
to the stuck non-value if 3 then 1 else 0 in the uML language. It is gibberish.

All reasonably powerful languages confront this problem in one way or another, but there is more than
one approach to dealing with it. A language in which no term can get stuck during evaluation is said to
be strongly typed. There is no way to apply an operation to a value of the wrong type. Notice that strong
typing and static typing are not the same property. For example, the language C is statically typed (the
compiler figures out types for all expressions), but it is possible to write code that gets stuck, such as the
following:

int x = 1;
int a[4];
a[4] = 2;

What this code does depends on what machine it’s compiled on and what compiler options are used. For
example, it might result in the variable x holding the value 2, or perhaps some other variable or even the
return address register containing that value. The program may compute the wrong results, crash, or do
something completely unpredictable, such as jumping to memory address 2 and executing code.

In C, when a program results in evaluation expressions whose possible results are not defined by the
semantics, either the outcome is “implementation-defined” or else the program is an incorrect C program.
Experience has shown that this is not necessarily a good idea, especially when it comes to building secure
systems. That the buck has been passed to the programmer is of little consolation, if the system is successfully
attacked by a buffer overrun that exploits implementation-defined behavior to jump to code controlled by
the attacker.

Some statically typed languages are strongly typed. Examples include Java and the various ML languages.
And some languages that are not statically typed are strongly typed, such as Scheme. And finally, some
languages, such as FORTH and assembly code, are neither strongly nor statically typed.

Even in languages like ML that are statically typed, there are terms that are stuck unless we define some
kind of run-time type checking. For example, the expression 0/0 causes a run-time error. Run-time checking
is needed to provide well-defined behavior in these cases.

3

2.1 Run-time type checking

As defined, uML is not explicitly a strongly typed language. We can solve this problem by extending the
operational semantics with rules that reduce all stuck expressions to a special error value error. Writing
these rules explicitly captures the need to do run-time type checking. The new term error represents a
run-time error. This term cannot occur in a well-formed program, but may arise during evaluation whenever
an otherwise stuck expression occurs.

Let us examine run-time type checking by building a translation from strongly-typed uML (call it uMLST)
to the uML just defined. The effect will be that when this new translation is layered on top of the translation
above, the resulting λCBV program will faithfully and soundly represent evaluation of the original uMLST

program. And the work done in the translated code arguably does a better job of showing what happens in
such a language than the operational semantics does.

To build a sound translation, we will need a representation of the error value. More generally, we will
need to be able to tell what kind of value we have when an operation is to be applied, so we can catch values
of the wrong type. The basic idea is to represent uMLST values as a pair of a tag and a uML value. The tag
is an integer representing the type. We could use 0 to tag the error value, 1 to tag null, 2 to tag booleans,
3 for numbers, 4 for pairs, and 5 for functions, for example. It doesn’t really matter what values we choose,
as long as they are distinct, so let’s give them symbolic names:

Err
4
= 0 Null

4
= 1

Bool
4
= 2 Num

4
= 3

Pair
4
= 4 Func

4
= 5

We use tags to check that we are getting the right kind of values where they are expected. For example,
we would check that we have a Boolean value for the test in a conditional if-then-else construct, by testing
that the value’s tag is 2.

Let us call the new translation E [[e]], where the subscript E stands for “error”. Define translations of the
various constructor forms as follows, tagging values appropriately:

E [[null]] = (Null,null) = (1,null)
E [[true]] = (Bool, true) = (2, true)
E [[false]] = (Bool, false)

E [[n]] = (Num, n)
E [[(e1, e2)]] = (Pair, (E [[e1]], E [[e2]]))

E [[λx1, . . . , xn. e]] = (Func, (n, λx1, . . . , xn. E [[e]]))

Each value is paired with an indication of its run-time type. In addition, lambda abstractions are tagged
with the number of their arguments, so that the argument count can be checked when the abstraction is
applied. The translation of other terms needs to check tags. For example, we can translate if as follows,
checking the value of the conditional to make sure it has the boolean tag, 2:

E [[if e0 then e1 else e2]] = let (t, z) = E [[e0]]
in if t = Bool

then (if z then E [[e1]] else E [[e2]])
else error

(where z 6∈ FV (e1) ∪ FV (e2))

4

Similarly, for pair operations and arithmetic:

E [[let x, y = e1 in e2]] = let (t, z) = E [[e1]] in if t = Pair

then let (x, y) = z in e2

else error ((where z 6∈ FV (e);))
E [[e1 + e2]] =let (t1, z1) = E [[e1]] in

let (t2, z2) = E [[e2]] in

if (t1 = Num) ∧ (t2 = Num)
then z1 + z2

else error

(where z 6∈ FV (e1) ∪ FV (e2))

Of course, we’ll need more translation rules for the various arithmetic and logical operators. The rule for
function application is more complicated, because it checks that the number of actual parameters matches
the number of formal parameters:

E [[e0 e1 . . . en]] =let (tf , pf) = E [[e0]] in

if tf = Func then

let(nf , zf) = pf in

if nf = n

then zf E [[e1]] . . . E [[en]]
else error

else error

(where zf , pf , nf 6∈ FV (ei) for i ∈ 0..n)

3 Summary

We can see that for uML to be strongly typed, a translation to a lower-level language must insert some
kind of type information for run-time type checking. However, run-time type checking doesn’t really solve
the problem of unexpected values cropping up at run time; it merely converts unpredictable behavior into
a predictable error value. This can make systems easier to reason about and perhaps more secure, but it
doesn’t guarantee that they work.

One way to improve the situation is to introduce an exception mechanism that allows a program to catch
error conditions and handle them in some way. In general, though, it’s difficult for programs to handle errors
effectively, even with an exception mechanism. We’ll see how exceptions and exception handling work in the
next few lectures.

Another approach is to use static (compile-time) reasoning, perhaps supported by a static type system
that rules out some classes of stuck expressions. This reduces the cost associated with run-time type check-
ing, and more importantly, ensures that certain errors cannot occur. However, type systems can never be
expressive enough to rule out all unexpected expressions, and they come at some cost in expressiveness,
because they must be conservative. We’ll talk about type systems later in the course.

5

