
1 Evaluation Contexts

The rules for structural operational semantics can be classified into two types:

• reduction rules, which describe the actual computation steps; and

• structural congruence rules, which constrain the choice of reductions that can be performed next, thus
defining both the order of evaluation and whether subexpressions are evaluated lazily.

For example, the CBV reduction strategy for the λ-calculus was captured in the following rules:

(λx. e) v −→ e{v/x}
(1)

e1 −→ e′1
e1 e2 −→ e′1 e2

e2 −→ e′2
v e2 −→ v e′2

(2)

Rule (1), β-reduction, is a reduction rule, whereas rules (2) are structural congruence rules. The rules (2)
say essentially that a reduction may be applied to a redex on the left-hand side of an application anytime,
and may be applied to a redex on the right-hand side of an application provided the left-hand side is already
fully reduced.

Although there are only two structural congruence rules in the CBV λ-calculus, there are typically many
more in real-world programming languages. It would be nice to have a more compact way to express them.

Evaluation contexts provide a mechanism to do just that. An evaluation context E, sometimes written
E [ • ], is a λ-term or a metaexpression representing a family of λ-terms with a special variable [ · ] called the
hole. If E [ • ] is an evaluation context, then E [ e ] represents E with the term e substituted for the hole.

Every evaluation context E [ • ] represents a context rule

e −→ e′

E [ e ] −→ E [ e′ ]
,

which says that we may apply the reduction e −→ e′ in the context E [ e ].
For the case of the CBV λ-calculus, the two structural congruence rules (2) are specified by the two

evaluation context schemes ([ · ] e) and (v [ · ]). These are just a compact way of representing the rules (2).
Thus we could specify the CBV λ-calculus simply:

(λx. e) v −→ e{v/x} [ · ] e v [ · ]

The CBN λ-calculus has an equally compact specification:

(λx. e) e′ −→ e{e′/x} [ · ] e

2 Nested Contexts

Note that in CBV, the evaluation contexts [ · ] e and v [ · ] do not specify all contexts in which the reduction
rule (1) may be applied. There are also compound contexts obtained from nested applications of the rules
(2). For example, the context

(v [ · ]) e (3)

is also a valid evaluation context for CBV, since it can be derived from two applications of the rules (2):

e1 −→ e2

v e1 −→ v e2
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Here we have applied the right-hand rule of (2) in the first step and the left-hand rule of (2) in the second.
The evaluation context (3) represents the abbreviated rule

e1 −→ e2

(v e1) e −→ (v e2) e

obtained by collapsing the two steps of (4).
The set of all valid evaluation contexts for the CBV λ-calculus is represented by the grammar

E ::= [ · ] | E e | v E.

3 Annotated Proof Trees

We can also use evaluation contexts to indicate exactly where a reduction is applied in each step of a proof
tree. For example, consider the annotated proof tree

(λx. x) 0 −→ 0
(λx. x) ((λx. x) 0) −→ (λx. x) 0

((λx. x) [ · ])

(λx. x) ((λx. x) 0) λz. z z −→ (λx. x) 0 λz. z z
([ · ] λz. z z)

We have labeled each step to indicate the context in which the β-reduction was applied.
As above, we can simplify the tree by collapsing the two steps and annotating the resulting abbreviated

tree with the corresponding nested context:

(λx. x) 0 −→ 0
(λx. x) ((λx. x) 0) λz. z z −→ (λx. x) 0 λz. z z

((λx. x) [ · ] λz. z z)

4 Styles of semantics

Our goal is to study programming language features using various semantic techniques. So far we have seen
small-step and big-step operational semantics. However, there are other ways to specify semantics, and they
can give useful insights that may not be apparent in the operational semantics. A different way to give
semantics is by defining a translation from the programming language to another language that is better
understood (and typically simpler). This is essentially a process of compilation, in which a source language
is converted to a target language. Later on we’ll see that the target language can even be mathematics,
in which case we refer to the semantics as a denotational semantics. There is a third style of semantics,
axiomatic semantics, which we’ll talk about later.

In this course, we will mostly use small-step semantics and translation.

5 Translation

We map well-formed programs in the original language into items in a meaning space. These items may be

• programs in an another language (definitional translation);

• mathematical objects (denotational semantics); an example is taking λx : int. x to {(0, 0), (1, 1), . . .}.

Because they define the meaning of a program, these translations are also known as meaning functions
or semantic functions. We usually denote the semantic function under consideration by [[·]]. An object e in
the original language is mapped to an object [[e]] in the meaning space under the semantic function. We may
occasionally add an annotation to distinguish between different semantic functions, as for example [[e]]cbn or
C[[e]].
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6 Translating CBN λ-Calculus into CBV λ-Calculus

The call-by-name (lazy) λ-calculus was defined with the following reduction rule and evaluation contexts:

(λx. e1) e2 −→ e1{e2/x} E ::= [ · ] | E e.

The call-by-value (eager) λ-calculus was similarly defined with

(λx. e) v −→ e{v/x} E ::= [ · ] | E e | v E.

These are fine as operational semantics, but the CBN semantics rules don’t do a good job of capturing
why CBN is more expensive than CBV. We can see this better by constructing a translation from CBN to
CBV. That is, we treat the CBV calculus as the meaning space. Because CBV is closer to how the underlying
machine works, this translation exposes some issues that need to be addressed when implementing a lazy
language.

To translate from the CBN λ-calculus to the CBV λ-calculus, we define the semantic function [[·]] by
induction on the structure of the translated expression:

[[x]] = x I (I = λz. z)
[[λx. e]] = λx. [[e]]
[[e1 e2]] = [[e1]] (λz. [[e2]]), where z /∈ FV ([[e2]]).

The key issue is how to make function application lazy in the arguments. CBV evaluation will eagerly
evaluate all the argument expressions, so they need to be protected from evaluation. This is accomplished
by wrapping the expressions passed as function arguments inside λ-abstractions to delay their evaluation.
When the value of a variable is really needed, the abstraction can be passed a dummy parameter to evaluate
its body.

For an example, recall that we defined:

true
4
= λxy. x

false
4
= λxy. y

if
4
= λxyz. xyz.

The problem with this construction in the CBV λ-calculus is that if b e1 e2 evaluates both e1 and e2,
regardless of the truth value of b. The conversion above can be used to fix these to evaluate them lazily.

[[true]] = [[λxy. x]]
= λxy. [[x]]
= λxy. x I

[[false]] = λxy. y I

[[if]] = [[λxyz. xyz]]
= λxyz. [[(xy)z]]
= λxyz. [[xy]] (λd. [[z]])
= λxyz. [[x]] (λd. [[y]]) (λd. [[z]])
= λxyz. (x I) (λd. y I) (λd. z I).

This is not a complete solution, as the conversion does not work for all expressions, but only fully
converted ones. But if used as intended, it has the desired effect. For example, evaluating under the CBV
rules,
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[[if true e1 e2]] = [[if]] (λd. [[true]]) (λd. [[e1]]) (λd. [[e2]])
= (λxyz. (x I) (λd. y I) (λd. z I)) (λd. [[true]]) (λd. [[e1]]) (λd. [[e2]])
−→ ((λd. [[true]]) I) (λd. (λd. [[e1]]) I) (λd. (λd. [[e2]]) I)
−→ [[true]] (λd. [[e1]]) (λd. [[e2]])
= (λxy. x I) (λd. [[e1]]) (λd. [[e2]])
−→ (λd. [[e1]]) I

−→ [[e1]],

and e2 was never evaluated.

7 Adequacy

Both the CBV and CBN λ-calculus are deterministic systems in the sense that there is at most one reduction
that can be performed on any term. When an expression e in a language is evaluated in a deterministic
system, one of three things can happen:

1. The computation can converge to a value: e ⇓ v.

2. The computation can reach a non-value from which there is no further transition. When this happens,
we say the computation is stuck.

3. The computation can diverge: e ⇑.

A semantic translation is adequate if these three behaviors in the source system are accurately reflected
in the target system, and vice versa. One aspect of this relationship is captured in the following diagram:

[[e]]

e

v′

v

[[v]]

6

?

6

?
-

-

∗

∗

≈

If an expression e converges to a value v in zero or more steps in the source language, then [[e]] must converge
to some value v′ that is equivalent in some way (e.g., β-equivalence) to [[v]], and vice-versa. This is formally
stated as two properties, soundness and completeness. For our CBN-to-CBV translation, these properties
take the following form:

7.1 Soundness

[[e]] ∗−→
cbv

v′ ⇒ ∃v. e
∗−→

cbn
v ∧ v′ ≈ [[v]]

In other words, any computation in the CBV domain starting from the image [[e]] of a CBN program
e must accurately reflect some computation in the CBN domain. Intuitively, no bad things happen in the
target language.

7.2 Completeness

e
∗−→

cbn
v ⇒ ∃v′. [[e]] ∗−→

cbv
v′ ∧ v′ ≈ [[v]]

In other words, any computation in the CBN domain starting from e must be accurately reflected by the
computation in the CBV domain starting from the image [[e]]. Intuitively, all good things can happen in the
target language.
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7.3 Nontermination

It must also be the case that the source and target agree on nonterminating executions. Assuming that
the source language never gets stuck, this follows from the soundness and completeness properties. But in
general, the source language may get stuck. We write e ⇑ and say that e diverges if there exists an infinite
sequence of expressions e1, e2, . . . such that e −→ e1 −→ e2 −→ . . . . The additional condition for adequacy
is

e ⇑cbn ⇐⇒ [[e]] ⇑cbv .

The direction ⇐ of this implication can be considered part of threquirement for soundness, and the direction
⇒ can be considered part of the requirement for completeness. Adequacy is the combination of soundness
and completeness.

8 Proving adequacy *

We would like to show that evaluation commutes with translation in our CBV→CBN translation. To do
this we first need a notion of target term equivalence (≈) that is preserved by evaluation. This is made more
challenging because as evaluation takes place in the target language, intermediate terms are generated that
are not the translation of any source term. For some translations (but not this one), the reverse may also
happen. Therefore, equivalence needs to allow for some extra β redexes that appear during translation. We
can define this equivalence by structural induction on CBV target terms.

x ≈ x

λx. t ≈ λx. t′ (if t ≈ t′)
t0 t1 ≈ t′0 t′1 (if t0 ≈ t′0 and t1 ≈ t′1)

t ≈ (λz. t) I (if z 6∈ FV (t))

Here, t represents target terms, to keep them distinct from source terms e. We also include rules so that
the relation ≈ is reflexive, symmetric, and transitive. Clearly, if two terms are considered equivalent with
respect to this relation, they will have the same β-normal form.

The approach to showing adequacy is to show that each step in the source term is mirrored by evaluation
steps in the corresponding target term, and vice versa. So we define a correspondence between source and
target terms that is more general than the translation [[·]], and that is preserved during evaluation of both
source and target.

We write e . t to mean that CBN term e corresponds to CBV term t. The following proposition captures
the idea that CBV evaluation simulates CBN evaluation at the level of individual steps:

e . t ∧ e → e′ ⇒ ∃t′.t →∗ t′ ∧ e′ . t′ (5)

This can be visualized as a commutation diagram:

t

e

t′

e′

6

?

. .
6

?
-

-

∗ (≈ [[e′]])

In fact, since in this case the source language cannot get stuck during evaluation, and both languages
have deterministic evaluation, (5) ensures that evaluation in each language corresponds to the other.

We define the relation . in such a way that e . [[e]]. Then, using (5), we can show that any trace in the
source language produces a corresponding trace in the target, by induction on the number of source-language
steps.

We define the relation . as follows:
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x . x I (6)
λx. e . λx. t (if e . t) (7)
e0 e1 . t0 (λ . t1) (if e0 . t0, e1 . t1) (8)

e . (λ . t) I (if e . t) (9)

For simplicity, we ignore the fresh variable that would be used in the new lambda abstraction in line (8).
Lines (6–8) straightforwardly ensure that a source term corresponds to its translation. Line (9) is different;

it takes care of the extra β reductions that crop up during evaluation. Because the t side of the . relation
becomes structurally smaller in this rule’s premise, the definition of the relation is still well-founded. Lines
(6–8) are well-founded based on the structure of e; Line (9) is well-founded based on the structure of t. If
we were proving a more complex translation correct, we would need more rules like (9) for other meaning-
preserving target-language reductions.

First, let’s warm up by showing that a term corresponds to its translation.

Lemma 1
e . [[e]]

Proof: an easy structural induction on e.

• Case x: x . x I by definition.

• Case λx. e′: We have [[e]] = λx. [[e′]]. By the induction hypothesis (IH), e′ . [[e′]], so λx. e′ . λx. [[e′]] by
(7).

• Case e0 e1: We have [[e]] = [[e0]] (λ . [[e1]]). By the IH, e0 . [[e0]] and e1 . [[e1]]. Therefore by (8),
e0 e1 . [[e0]] [[e1]].

Next, let’s show that if e corresponds to t, its translation is equivalent to t:

Lemma 2
e . t ⇒ [[e]] ≈ t

Proof: an induction on the derivation of e . t.

• Case x . x I:
Trivial: [[x]] = x I.

• Case λx. e′ . λx. t′ where e′ . t′:
Here, [[e]] = λx. [[e′]]. IH: [[e′]] ≈ t′. Therefore λx. [[e′]] ≈ λx. t′ as required.

• Case e0 e1 . t0 (λ . t1) where e0 . t0 and e1 . t1:
Here, [[e0 e1]] = [[e0]](λ . [[e1]]), and by the IH, [[e0]] ≈ t0 and [[e1]] ≈ t1. So from the definition of ≈, we
have [[e0]](λ . [[e1]]) ≈ t0 (λ . t1).

• Case e . (λ . t) I where e . t:
IH: [[e]] ≈ t. But t ≈ (λ . t) I, and ≈ is transitive.

Given these definitions, we can prove (5) by induction on the derivation of e . t. We will need two useful
lemmas. The first is a substitution lemma that says substituting corresponding terms into corresponding
terms produces corresponding terms:
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Lemma 3
e1 . t1 ∧ e2 . t2 ⇒ e2{e1/x} . t2{λ. t1/x}

Proof. By induction on the derivation of e2 . t2.

• Case x . x I:
We have e2{e1/x} = e1 and t2{λ. t1/x} = (λ. t1) I. By rule (9), we have e1 . (λ. t1) I.

• Case y . y I where y 6= x:
Trivial: substitution has no effect.

• Case λx. e . λx. t where e . t:
Trivial: The substitutions into e2 and t2 have no effect.

• Case λy. e . λy. t where e . t, x 6= y:
Here e2{e1/x} = λy. e{e1/x} and t2{λ. t1/x} = λy. t{λ. t1/x}. Since e . t, by the induction hypothesis
we have e{e1/x} . t{λ. t1/x}. Therefore by (7), λy. e{e1/x} . λy. t{λ. t1/x}, as required.

• Case e e′ . t (λ. t′), where e . t and e′ . t′:
We have e2{e1/x} = e{e1/x} e′{e1/x}, and t2{λ. t1/x} = t{λ. t1/x} (λ. t′{t1/x}). From the in-
duction hypothesis, e{e1/x} . t{λ. t1/x} and e′{e1/x} . t′{λ. t1/x}. Therefore, by (8) we have
e{e1/x} e′{e1/x} . t{λ. t1/x} (λ. t′{t1/x}).

• Case e2 . (λ . t′2) I, where e2 . t′2:
We need to show that e2{e1/x} . ((λ . t′2) I){λ . t1/x}; that is, e2{e1/x} . ((λ . t′2{λ . t1/x}) I).
From the induction hypothesis, we have e2{e1/x} . t′2{λ. t1/x}. By (9), this means e2{e1/x} .
(λ . t′2{λ. t1/x}) I.

The next lemma we need says that if a value λx. e corresponds to a term t, then t reduces to a corre-
sponding lambda term λ . t′.

Lemma 4
λx. e . t ⇒ ∃t′. t −→∗ λx. t′ ∧ e . t′

Proof. By induction on the derivation of λx. e . t.

• Case y . y I: Impossible, as y 6= λx. e.

• Case λx. e . λx. t′ where e . t′:
Here, t = λx. t′, and the result is immediate.

• Case e0 e1 . t0 (λ. t1): Impossible, as e0 e1 6= λx. e.

• Case e0 . (λ. t0) I, where e0 . t0:
In this case e0 = λx. e, and t = ((λ. t0) I). By the inductive hypothesis, there is some t′ such that
t0 −→∗ λx. t′ and e . t′. Since t = ((λ. t0) I) −→ t0 we have t −→∗ λx. t′, as required.

We are now ready to prove (5).

Proof. By induction on the derivation of e . t:

• Case x . x I: Vacuously true, as there is no evaluation step e −→ e′.

• Case λx. e . λx. t: A value: also vacuously true.

• Case e0 e1 . t0 (λ . t1), where e0 . t0 and e1 . t1:
We show this by cases on the derivation of e −→ e′:
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– Case e0 e1 −→ e′0 e1, where e0 −→ e′0:
By the induction hypothesis, ∃t′0.e′0 . t′0∧t0 −→∗ t′0. It is easy to see that therefore t0 (λ. t1) −→∗

t′0 (λ. t1). So by (8), e′0 e1 . t′0 (λ. t1), as required.

– Case (λx. e2) e1 −→ e2{e1/x}:
Here λx. e2 . t0 and e1 . t1.
By Lemma 4, there exists a t2 such that t0 −→∗ λx. t2 and e2 . t2. Therefore, we have
t0 (λ . t1) −→∗ (λx. t2) (λ . t1) −→ t2{λ. t1/x}. But from the substitution lemma above (Lemma 3),
we know that e2{e1/x} . t2{λ. t1/x}, as required.

• Case e0 . (λ. t0) I, where e0 . t0:
By the induction hypothesis, ∃t′0.e0 . t′0 ∧ t0 −→∗ t′0. It is easy to see that therefore ((λ. t0) I) −→
t0 −→∗ t′0, as required.

Having proved (5), we can show completeness of the translation. If we start with a source term e and
its translation [[e]], we know from Lemma 1 that e . [[e]]. From (5), we know that each step of evaluation
of e is mirrored by execution on the target side that preserves e . t. If the evaluation of e diverges, so
will the evaluation of [[e]]. If the evaluation of e converges on a value v, then the evaluation of [[e]] will
reach a convergent (by Lemma 4) term t such that v . t. And by Lemma 2, [[v]] ≈ t. This demonstrates
completeness.

To show soundness of the translation, we need to show that every evaluation in the target language
corresponds to some evaluation in the source language. Suppose we have a target-language evaluation
t −→∗ v′, where t = [[e]], but there is no corresponding source-language evaluation of e. There are three
possibilities. First, the evaluation of e could get stuck. This can’t happen for this source language because all
terms are either values or have a legal evaluation. Second, the evaluation of e could evaluate to a value v. But
then v must correspond to v′, because the target-language evaluation is deterministic. Third, the evaluation
of e might diverge. But then (5) says there is a divergent target-language evaluation. The determinism of
the target language ensures that can’t happen.
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