
CSCI B522 Lecture 3 Encodings, Translation, and Equivalence 10 Sep, 2009

Lecture notes for CS 6110 (Spring’09) taught by Andrew Myers at Cornell; edited by Amal Ahmed, Fall’09.

1 Church Encodings

See Pierce, Section 5.2 for encodings of Church booleans, pairs, and Church numerals.

We can encode boolean values and conditionals in the λ-calculus as follows:

tru = λx. λy. x
fls = λx. λy. y
ife = λb. λm. λn. b m n

To see how the encoding works, try reducing the following expression using CBV:

ife tru v1 v2.

Next, consider the expression:
ife tru id Ω

Notice that under CBV, the above expression loops forever, while under CBN, it evaluates to id.
The general trick for doing these encodings is as follows. Values will be functions; construct these

functions so that they return the appropriate information when called by an operation.

2 Lambda Calculus with Booleans

We can also directly extend the λ-calculus with booleans and conditionals, rather than rely on encodings.
The syntax of the extended language λ+bool is as follows:

e ::= x | λx. e | e0 e1 | true | false | if e0 then e1 else e2

Before we give a CBV semantics for the extended language, we must define the set of values in the language:

v ::= λx. e | true | false

Let us now define a CBV structural operational semantics for λ+bool. There is more than one way to
evaluate conditionals in this language. For now, we adopt the following operational semantics. We write
−→a for the small-step relation. (Later we will consider a different small-step relation −→b for λ+bool.)

e1 −→a e
′
1

e1 e2 −→a e
′
1 e2

e −→a e
′

v e −→a v e
′ λx. e v −→a e{v/x}

e0 −→a e
′
0

if e0 then e1 else e2 −→a if e′
0 then e1 else e2

e1 −→a e
′
1

if v0 then e1 else e2 −→a if v0 then e′
1 else e2

e2 −→a e
′
2

if v0 then v1 else e2 −→a if v0 then v1 else e′
2 if true then v1 else v2 −→a v1 if false then v1 else v2 −→a v2

2.1 Translating the λ+bool-calculus to λ-calculus

Pierce (Chapter 5): “In the 1960s, Peter Landin observed that a complex programming language can be
understood by formulating it as a tiny core calculus capturing the language’s essential mechanisms, together
with a collection of convenient derived forms whose behavior is understood by translating them into the core
. . . ”

1

As a simple example of translating a more complex programming language into a core calculus, let us
consider a translation from the language λ+bool to the λ-calculus. We define a function T [[e]] that maps a
λ+bool (source language) expression e to a λ-calculus (target language) term. The translation of variables, λ
abstraction, and application is straightforward since λ-abstraction and application are available in the target
language. When translating boolean values and conditionals, we use the Church encoding of booleans that
we discussed above.

tru = λx. λy. x
fls = λx. λy. y
ife = λb. λm. λn. b m n

T [[x]] = x
T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = (T [[e1]]) (T [[e2]])
T [[true]] = tru
T [[false]] = fls

T [[if e0 then e1 else e2 = ife T [[e0]] T [[e1]] T [[e2]]]]

Though the above translation function is recursive, notice that in each case, the right-hand side defines the
value of T [[e]] in terms of proper subterms of e. Since all terms have finite size, this means that if we were to
expand out the definition of T [[e]] for any given e, it would eventually bottom out at applications to variables,
or at applications to true or false. Technically, this is a definition of a function by structural induction on e.

You can also think of T [[e]] as a compiler that compiles the source term e into a target term. An important
feature of such a translation (or of a compiler) is that the translation preserve the semantics of the source
language. (Such compilers are called semantics preserving.) Intuitively, the behavior of the target term T [[e]]
should match the behavior of the source term e. Specifically, the translation is sound if the following holds:
If e −→a v, then there exists v′ such that T [[e]] −→ v′ and T [[v]] ≡ v′. (We will define equivalence ≡ later in
this lecture. For now, you can think of ≡ as equality.)

Given the source-language operational semantics (−→a) the function T [[e]] is sound. Later on we will see
how to prove such properties.

In particular, note that the source term if truethenidelseΩ diverges (when reduced using −→a), and that
its translation T [[if true then id else Ω]] = ife tru id Ω also diverges (when reduced using the CBV operational
semantics −→).

2.2 An alternative operational semantics for λ+bool

The operational semantics we gave above for λ+bool is rather unusual in that both branches of the conditional
are always evaluated. In real programming languages, only one branch is evaluated depending on whether
the condition evaluates to true or false. Below we define such an operational semantics; we write −→b for
this small-step relation.

e1 −→b e
′
1

e1 e2 −→b e
′
1 e2

e −→b e
′

v e −→b v e
′ λx. e v −→b e{v/x}

e0 −→b e
′
0

if e0 then e1 else e2 −→b if e′
0 then e1 else e2 if true then e1 else e2 −→b e1 if false then e1 else e2 −→b e2

If we use the translation function we defined above, notice that the translation is no longer sound. In
particular, note that the source term if true then id else Ω −→b id, whereas its translation
T [[if true then id else Ω]] = ife tru id Ω diverges (under the CBV operational semantics −→).

How can we fix the translation so that it is sound when the source language operational semantics is
given by −→b? In particular, we want a translation T [[e]] such that: If e −→b v, then there exists v′ such
that T [[e]] −→ v′ and T [[v]] ≡ v′.

The key idea is to change the translation of if expressions such as if truethenidelseΩ so that the evaluation
of the Ω is delayed until it is needed. That is, the translation should put the diverging computation (in this

2

case, Ω) under a λ, as in λz.Ω. Since λ-abstractions are values, the term λz.Ω will not lead to an infinite
loop unless it is applied. Specifically, we can change the translation of if expressions as follows:

T [[if e0 then e1 else e2]] = ife T [[e0]] (λy. T [[e1]]) (λz. T [[e2]]) where y /∈ FV(e1) and z /∈ FV(e2)

However, the above is now no longer in sync with the encodings of tru and fls chosen above. We change the
encodings of tru and fls and the translation as follows.

tru′ = λx. λy. x id
fls′ = λx. λy. y id
ife′ = λb. λm. λn. b m n

T [[x]] = x
T [[λx. e]] = λx. T [[e]]
T [[e1 e2]] = (T [[e1]]) (T [[e2]])
T [[true]] = tru′

T [[false]] = fls′

T [[if e0 then e1 else e2]] = ife′ T [[e0]] (λy. T [[e1]]) (λz. T [[e2]]) where y /∈ FV(e1) and z /∈ FV(e2)

The translation defined above is sound. Note that the source term if true then id else Ω −→b id, and its
translation also evaluates to id (under CBV):

T [[if true then id else Ω]]
= ife′ tru′ (λz. id) (λz.Ω)
−→ tru′ (λy. id) (λz.Ω)
−→ (λy. id) id
−→ id

3 Formal Treatment of Substitution

3.1 Variable Capture

CBN and CBV evaluation reduce β redexes (λx. e) e′ only when the right-hand side (RHS) e′ is a closed
term. In general we can try to normalize lambda terms by reducing redexes inside lambda abstractions,
because the reductions should still preserve the equivalence of the terms. However, in this case the term
e′ may be an open term containing free variables. Substituting e′ into e may cause variable capture. For
example, consider the substitution (y (λx. x y)){x/y}. If we replace all the unbound y’s with x, we’ll get
x (λx. x x).

In fact, this is a problem seen in many other mathematical contexts, such as in integral calculus, because
like λ, the integral operator is a binder.

3.2 Free variables

In order to define substitution correctly, we first need to define the set of free variables of a term. We denote
this by the function FV(e), which is defined recursively as follows:

FV(x) = {x}
FV(λx. e) = FV(e)− {x}
FV(e0 e1) = FV(e0) ∪ FV(e1)

This definition is recursive, but notice that in each of the three cases, the right-hand side defines the
value of FV(e) in terms of proper subterms of e. Since all terms have finite size, this means that if we were
to expand out the definition of FV(e) for any given e, it would eventually bottom out at applications to
variables (the first case). Technically, this is a definition of a function by structural induction on e. We will
talk more about these kinds of definitions later.

3

3.3 Capture-avoiding substitution

We write e1{e2/x} to denote the result of substituting e2 for all free occurrences of x in e1, according to the
following rules, also by structural induction on e (modulo α-equivalence, which well talk about shortly):

x{e/x} = e
y{e/x} = y where y 6= x
(e0 e1){e/x} = (e0{e/x})(e1{e/x})
(λx. e0){e/x} = λx. e0
(λy. e0){e/x} = λy. e0{e/x} where y 6= x and y /∈ FV(e1)
(λy. e0){e/x} = λz. e0{z/y}{e/x} where y 6= x, z 6= x, z /∈ FV(e0) and z /∈ FV(e).

Note that the rules are applied inductively. That is, the result of a substitution in a compound term is
defined in terms of substitutions on its subterms. The very last of the six rules applies when y ∈ FV(e1). In
this case we can rename the bound variable y to z to avoid capture of the free occurrence of y. One might
well ask: But what if y occurs free in the scope of a λz in e1? Wouldn’t the z then be captured? The answer
is that it will be taken care of in the same way, but inductively on a smaller term.

Despite the importance of substitution, it was not until the mid-1950s that a completely satisfactory
definition of substitution was given, by Haskell Curry. Previous mathematicians, from Newton to Hilbert
to Church, worked with incomplete or incorrect definitions. It is the last of the rules above that is hard to
get right, because it is easy to forget one of the three restrictions on the choice of y′, or to falsely convince
yourself that they are not needed.

In the pure λ-calculus, we can start with a λ-term and perform β-reductions on subterms in any order,
using the full substitution rule to avoid variable capture when the substituted term is open.

Equivalence, Reduction and Normal Forms

4 Term Equivalence

When are two terms equal? This is not as simple a question as it may seem. As intensional objects, two
terms are equal if they are syntactically identical. As extensional objects, however, two terms should be
equal if they represent the same function. We will say that two terms are equivalent if they are equal in an
extensional sense.

For example, it seems clear that the terms λx. x and λy. y are equivalent. The name of the variable is
not essential. But we also probably think that λx. (λy. y) x is equivalent to λx. x too, in a less trivial sense.
And there are even more interesting cases, like λx. yx y.

But what function does a term like λx. x represent? Intuitively, its the identity function, but over
what domain and codomain? We might think of it as representing the set of all identity functions, but
this interpretation quickly leads to Russells paradox. In fact, defining a precise mathematical model for
lambda-calculus terms is far from straightforward, requiring some sophisticated domain theory.

One possible meaning of a term is divergence. There are innitely many divergent terms; one example is Ω.
In some sense, all divergent terms are equivalent, since none of them produce a value. The implication is that
it is undecidable to determine whether two terms are equivalent, because otherwise, given the relationship
between the λ-calculus and Turing machines, we could solve the halting problem on lambda calculus terms
by testing equivalence to Ω.

4.1 Observational Equivalence

Another way of approaching the problem is to say that two terms are equivalent if they behave indistin-
guishably in all possible contexts.

More precisely, two terms will be considered equivalent if in every context, either

4

• they both converge and produce the same value, or

• they both diverge.

A program context (usually context for short) is just a term with a single occurrence of a distinguished
special variable called the hole. We write [·] to denote the hole. We use the metavariable C for contexts.

For the λ-calculus, a context C can be

• a hole [·];
• a lambda term λx.C, which has a hole somewhere in the body of the λ (or under the λ);

• an application C e, where a term with a hole is applied to an argument without a hole; or

• an application e C, where a term without a hole is applied to an argument with a hole.

In BNF notation, here is the grammar for expressions e and contexts C for the λ-calculus.

e ::= x | λx. e | e0 e1
C ::= [·] | λx.C | C0 e1 | e0 C1

The notation C[e] denotes the context C with the hole replaced by the term e. Then we can define
equivalence in the following way:

e1 ≡ e2 ⇐⇒ for all contexts C, C[e1] ⇓ v iff C[e2] ⇓ v.

Without loss of generality, we can simplify the definition to

e1 ≡ e2 ⇐⇒ for all contexts C, C[e1] ⇓ iff C[e2] ⇓
because if they converge to different values, it is possible to devise a context that causes one to converge
and the other to diverge. Suppose that C[e1] ⇓ v1 and C[e2] ⇓ v2, where v1 and v2 have different behavior.
Then we can find some context C ′ which applied to v1 converges, and applied to v2 diverges. Therefore, the
context C ′[C[·]] is a context that causes the original e1, e2 to converge and diverge respectively, satisfying
the simpler denition.

This notion of equivalence is known as observational equivalence, or alternatively, contextual equivalence.
It may be written e1 ≡ e2, or e1 ≈obs e2, or e1 ≈ctx e2.

As mentioned above, determining whether two terms are equivalent is undecidable. A conservative
approximation (but unfortunately still undecidable) is the following. Let e1 and e2 be terms, and suppose
that e1 and e2 converge to the same value v when reductions are applied according to some strategy. Then
e1 is equivalent to e2. That is,

If e1 ⇓ v and e2 ⇓ v, then e1 ≡ e2
This normalization approach (in which terms are reduced to a normal form on which no more reductions can
be done) is useful for compiler optimization and for checking type equality in some advanced type systems.

5 Rewrite Rules

5.1 β-reduction

We have already seen the β-reduction rule:

(λx. e) e1
β−→ e{e1/x}.

An instance of the left-hand side (LHS) is called a redex and the corresponding instance of the right-hand
side is called the contractum. (Note that in CBV, λx. (λy. y) x is a value—we cannot apply β-reduction
inside the body of an abstraction—so we cannot apply this reduction.)

If a term β-reduces to another term then the two terms are said to be β-equivalent. This defines an
equivalence relation on the set of terms denoted e1 =β e2. Hence, we have the following β-equivalence:

(λx. e) e1 =β e{e1/x}.
A term is in β-normal form if no β-reduction is possible.

5

5.2 α-reduction

In λx. x z the name of the bound variable x doesn’t really matter. This term is semantically the same
as λy. y z. A renaming like this is known as an α-reduction, α-conversion, or just α-renaming. In an α-
reduction, the new bound variable must be chosen so as to avoid capture. If a term α-reduces to another
term, then the two terms are said to be α-equivalent. This defines an equivalence relation on the set of terms,
denoted e1 =α e2.

Recall the definition of of free variables FV(e) of a term e. In general we have

λx. e =α λy. e{y/x} if y /∈ FV(e).

The proviso y /∈ FV(e) is to avoid the capture of a free occurrences of y in e as a result of the renaming.
When writing a λ-interpreter, the job of looking for α-renamings doesn’t seem all that practical. However,

we can use them to improve our earlier (normalization-based) definition of equivalence as follows:

If e1 ⇓ v1, e2 ⇓ v2, and v1 =α v2, then e1 ≡ e2.

5.3 Stoy diagrams and de Bruijn indices

We can create a Stoy diagram (after Joseph Stoy) for a closed term in the following manner. Instead of
writing a term with variable names, we write dots to represent the variables and connect variables with the
same binding with edges. Then α-equivalent terms have the same Stoy-diagram. For example, the term
λx. (λy. (λx. x y) x) x has the following Stoy diagram:

1.4 Capture-avoiding Substitution

Now we write e1{e2/x} to denote the result of substituting e2 for all free occurrences of x in e1, according to
the following rules, also by structural induction on e (modulo α-equivalence, which we’ll talk about shortly):

x{e/x} = e
y{e/x} = y where y != x

(e1 e2){e/x} = e1{e/x} e2{e/x}
(λx. e0){e1/x} = λx. e0

(λy. e0){e1/x} = λy. e0{e1/x} where y != x and y !∈ FV (e1)
(λy. e0){e1/x} = λz. e0{z/y}{e1/x} where y != x, z != x, z !∈ FV (e0), and z !∈ FV (e1).

Note that the rules are applied inductively. That is, the result of a substitution in a compound term is
defined in terms of substitutions on its subterms. The very last of the six rules applies when y ∈ FV (e1). In
this case we can rename the bound variable y to z to avoid capture of the free occurrence of y. One might
well ask: But what if y occurs free in the scope of a λz in e0? Wouldn’t the z then be captured? The answer
is that it will be taken care of in the same way, but inductively on a smaller term.

Despite the importance of substitution, it was not until the mid-1950’s that a completely satisfactory
definition of substitution was given, by Haskell Curry. Previous mathematicians, from Newton to Hilbert
to Church, worked with incomplete or incorrect definitions. It is the last of the rules above that is hard to
get right, because it is easy to forget one of the three restrictions on the choice of y′, or to falsely convince
yourself that they are not needed.

In the pure λ-calculus, we can start with a λ-term and perform β-reductions on subterms in any order,
using the full substitution rule avoid to avoid variable capture when the substituted term is open.

1.5 α-reduction

In λx. x z the name of the bound variable x doesn’t really matter. This term is semantically the same
as λy. y z. A renaming like this is known as an α-reduction, α-conversion, or just α-renaming. In an α-
reduction, the new bound variable must be chosen so as to avoid capture. If a term α-reduces to another
term, then the two terms are said to be α-equivalent. This defines an equivalence relation on the set of terms,
denoted e1 =α e2.

Recall the definition of free variables FV (e) of a term e. In general we have

λx.e =α λy.e{y/x} if y /∈ FV (e).

The proviso y /∈ FV (e) is to avoid the capture of a free occurrences of y in e as a result of the renaming.
When writing a λ-interpreter, the job of looking for α-renamings doesn’t seem all that practical. However,

we can use them to improve our earlier definition of equality:

If e1 ⇓ v1, e2 ⇓ v2, and v1 =α v2, then e1 = e2.

1.6 Stoy diagrams

We can create a Stoy diagram (after Joseph Stoy) for a closed term in the following manner. Instead of
writing a term with variable names, we write dots to represent the variables and connect variables with the
same binding with edges. Then α-equivalent terms have the same Stoy-diagram. For example, the term
λx. (λy. (λx. x y) x) x has the following Stoy diagram:

!•.(!•.(!•.• •) •) •

Another way to formalize the lambda calculus is to define its terms as the equivalence classes of the
syntactic terms given, with respect to the α-equivalence relation. (The equivalence classes of a set are just
the subsets that are equivalent with respect to some equivalence relation.) Since all terms in the equivalence

2

Another way to formalize the lambda calculus is to define its terms as the equivalence classes of the
syntactic terms given, with respect to the α-equivalence relation. (The equivalence classes of a set are just
the subsets that are equivalent with respect to some equivalence relation.) Since all terms in the equivalence
class have the same Stoy diagram, we can understand the terms as Stoy diagrams, and the reductions as
operating on these diagrams. This approach is often taken in theoretical programming language work, even
when the presentation appears to be using explicit variable names.

A related approach is to represent variables using de Bruijn indices, which replace variables with natural
numbers that indicate the binding site. Specifically, this is done by replacing named variables by natural
numbers where the number k stands for “the variable bound by the k’th enclosing λ.” For example, the
term λx. x corresponds to the nameless term λ. 0, while the term λx. λy. x (y x) corresponds to λ. λ. 1 (0 1).
Such terms are called de Bruijn terms and the numeric variables in them are called de Bruijn indices.

5.4 η-reduction

Here is another notion of equivalence. Compare the terms e and λx. e x. If these two terms are both applied
to an argument e1, then they will both reduce to e e1, provided x has no free occurrence in e. Formally,

(λx. e x) e1
β−→ e e1 if x /∈ FV(e).

This says that e and λx. e x behave the same way as functions and should be considered equal. Another
way of stating this is that e and λx. e x behave the same way in all contexts of the form [·] e1.

This gives rise to the rule for η-reductions:

λx. e x
η−→ e if x /∈ FV(e).

6

The η rule may not be sound with respect to our earlier notion of equality, depending on our reduction
strategy. For example, λx. e x is a value in CBV, but reductions might be possible in e and it might diverge.

The reverse operation, called η-expansion, can be useful as well. In practice, η-expansion is used to delay
divergence by trapping expressions inside λ abstraction terms.

A term is in βη-normal form if neither a β-reduction nor an η-reduction is possible.

6 Confluence

In the classical λ-calculus, no reduction strategy is specied, and no restrictions are placed on the order of
reductions. Any redex may be chosen to be reduced next. A λ-term in general may have many redexes,
so the process is nondeterministic. We can think of a reduction strategy as a mechanism for resolving the
nondeterminism, but in the classical λ-calculus, no such strategy is specied. A value in this case is just a
term containing no redexes. Such a term is said to be in normal form.

This makes it very difficult to define equivalence. One sequence of reductions may terminate, but another
may not. It is even conceivable that different terminating reduction sequences result in different values.
Luckily, it turns out that the latter cannot happen.

It turns out that the λ-calculus is confluent (also known as the Church-Rosser property) under α- and
β-reductions. Confluence says that if e reduces by some sequence of reductions to e1, and if e also reduces
by some other sequence of reductions to e2, then there exists an e3 such that both e1 and e2 reduce to e3.

e1
↗ ↘

e e3
↘ ↗

e2

It follows that up to α-equivalence, normal forms are unique. For if e ⇓ v1 and e ⇓ v2, and if v1 and v2 are
in normal form, then by confluence they must be α-equivalent. Moreover, regardless of the order of previous
reductions, it is always possible to get to the unique normal form if it exists.

However, note that it is still possible for a reduction sequence not to terminate, even if the term has a
normal form. For example, (λx. λy. y) Ω has a nonterminating CBV reduction sequence

(λx. λy. y) Ω
β−→ (λx. λy. y) Ω

β−→ · · ·

but a terminating CBN reduction, namely

(λx. λy. y) Ω
β−→ λy. y.

It may be difficult to determine the most efficient way to expedite termination. But even if we get stuck
in a loop, the Church-Rosser theorem guarantees that it is always possible to get unstuck, provided the
normal form exists.

In normal order, the leftmost redex is always reduced first. This strategy is closely related to CBN
evaluation, but also reduces inside lambdas. Like CBN, it finds a normal form if one exists, albeit not
necessarily in the most efficient way. Call-by-value (CBV) is correspondingly related to applicative order,
where arguments are reduced first.

In C, the order of evaluation of arguments is not defined by the language; it is implementation-specific.
Because of this, and the fact that C has side effects, C is not confluent. For example, the value of the
expression (x = 1) + x is 2 if the left operand of + is evaluated first, and 1 + x if the right operand is
evaluated first. This makes writing correct C programs more challenging!

The absence of confluence in concurrent imperative languages is why concurrent programming is difficult.
In the lambda calculus, confluence guarantees that reduction can be done in parallel without fear of changing
the result.

7

