
CSCI B522 Homework 6 Due: 4 Dec 2009

You can turn in handwritten solutions to this assignment. To keep your graders happy, please write
clearly, leave lots of whitespace, and use standard-sized (8.5 by 11in) paper! You may be penalized upto 20
points if you do not follow these instructions. Handwritten solutions should be submitted at Lindley Hall
301G by 5pm on the due date.

If you choose to typeset your solutions, you may use LaTeX or Word. If you use LaTeX, there is a
template available for your use at the course website. (Remember to look in b522.sty for macros you can
use.) A pdf file containing the solutions can be submitted online by midnight on the due date.

This homework is worth 100 points and you have about two weeks to complete it. It is a long and
challenging assignment, so start early!

1. Recursive types (15 pts.)

Consider mutually recursive type definitions like the following:

type Node = Edge list
type Edge = Node * Node

Eliminate the mutual recursion by giving recursive (µ) types for Node and Edge, and show that the
unfoldings of your Node and Edge types satisfy their respective equations. You may assume that list
and × (which is the notation we’ve been using for the ∗ type) are built-in type constructors.

2. Subtyping (20 pts.)

For each of the following questions, answer Yes or No. If the answer is Yes, show the subtyping
derivation. If the answer is No, give either a term that demonstrates how type safety breaks if we
allow the two types in the subtype relation, or a short explanation of why type safety is preserved even
if we allow the two types in the subtype relation.

(a) (5 pts) Is {x : Top→ Ref Top} a subtype of {x : Top→ Top}?
(b) (5 pts) Is {x : Top→ Ref Top} a subtype of {x : Ref Top→ Ref {y : Top}}?
(c) (5 pts) Is {x : Ref {y : Top}} a subtype of {x : Ref Top}?
(d) (5 pts) Is {x : Top} a subtype of {x : { }}?

3. Encoding sum and product types in the polymorphic lambda calculus (40 pts.)

Sum types and product types, as seen in λ→+×, are important features in programming languages.
In this problem, we will show that by using some insights from the Curry-Howard isomorphism, sum
types in λ→+× can be encoded using product types and universal types in the polymorphic lambda
calculus. Similarly, we can encode λ→+× product types using sum types and universal types in the
polymorphic lambda calculus.

Our source language will consist of the simply-typed λ-calculus extended with sum and product types.
(Here B ranges over base types, such as Bool, Int, Unit, etc., while b ranges over constants of base
type, such as true, false, integers n, null, etc.)

Types T ::= B | T1 → T2 | T1 + T2 | T1 × T2

Terms e ::= b | x | λx:T. e | e1 e2 | inlT1+T2 e | inrT1+T2 e |
case e0 of inl x ⇒ e1 | inr y ⇒ e2 | (e1, e2) | fst e | snd e

The typing rules for this language are the same as defined in class.
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The target sum language F+ is the polymorphic lambda calculus extended with only sum types.

Types T ::= B | α | T1 → T2 | ∀α.T | T1 + T2

Terms e ::= b | x | λx:T. e | e1 e2 | Λα. e | e [T ] | inlT1+T2 e | inrT1+T2 e |
case e0 of inl x ⇒ e1 | inr y ⇒ e2

The target product language F× is the polymorphic lambda calculus extended with only product types.

Types T ::= B | α | T1 → T2 | ∀α.T | T1 × T2

Terms e ::= b | x | λx:T. e | e1 e2 | Λα. e | e [T ] | (e1, e2) | fst e | snd e

The target languages have the same typing rules as the source language (provided that we add the
context ∆ to each judgment that appears in each of those typing rules), extended with two rules for
supporting polymorphism:

∆, α; Γ ` e : T
∆; Γ ` Λα. e : ∀α.T

(T-TAbs)
∆; Γ ` e : ∀α.T ∆ ` T1

∆; Γ ` e [T1] : T{T1/α}
(T-TApp)

Note that the rule for type abstraction requires that the new type variable α be fresh, to prevent the
capture of type variables appearing in Γ.

Both target languages have the usual rules for well-formed type expressions:

α ∈ ∆
∆ ` α

(WF-TVar)
∆ ` B

(WF-Grnd)

∆ ` T1 ∆ ` T2

∆ ` T1 → T2

(WF-Fun)
∆, α ` T
∆ ` ∀α.T

(WF-All)

∆ ` T1 ∆ ` T2

∆ ` T1 + T2

(WF-Sum)—F+ only
∆ ` T1 ∆ ` T2

∆ ` T1 × T2

(WF-Prod)—F× only

Your goal in this problem is to provide type translations from the source language to each of the two
target languages, and to show that these translations work. Each typed translation will convert typing
judgments in the source language into typing judgments in the target language. This translation will
be done in such a way that a term translation will automatically have a target language type derivation
if the original (source) term had a type derivation in the source language.

The Curry-Howard isomorphism will assist you in constructing these translations. We know that the
type T1 + T2 corresponds to the formula T1 ∨ T2 and the type T1 × T2 corresponds to the formula
T1 ∧ T2. From De Morgan’s rules in classical logic, we know that T1 ∨ T2 ≡ ¬(¬T1 ∧ ¬T2), and that
T1 ∧ T2 ≡ ¬(¬T1 ∨ ¬T2).

(a) (5 pts) As mentioned in class, types whose formulae contain negation can be generated by using
continuations, but our target language has no continuations.

i. Give a formula that is equivalent to A∧B but contains only logical operators for which there
are corresponding types in F+.

ii. Give a formula that is equivalent to A∨B but contains only logical operators for which there
are corresponding types in F×.

Hint: Use universal quantification to express a formula equivalent to ¬A. When you apply this
to De Morgan’s rules, be careful about the scope of your quantifiers! If you get stuck later on in
this problem, you should revisit your answer to this part.
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(b) (5 pts) We translate a source language type T into an F+ type T +[[T ]] and into an F× type
T ×[[T ]].

i. What logically equivalent F+ type should T +[[·]] map T1 × T2 to? And, the easier question:
what logically equivalent F+ type should T +[[·]] map B, T1 → T2, and T1 + T2 to?

ii. What logically equivalent F× type should T ×[[·]] map T1 + T2 to? And, the easier question:
what logically equivalent F× type should T ×[[·]] map B, T1 → T2, and T1 × T2 to?

(c) (10 pts) In this part, you will define the important parts of a type-preserving translation function
E+[[·]] which, when applied to a source language typing judgment, produces a well-typed F+ term.
It will be useful to have a semantic function G+[[·]] that simply maps all the types of variables in
Γ into the target language:

G+[[∅]] = ∅
G+[[Γ, x:T ]] = G+[[Γ]], x:T +[[T ]]

Then E+[[·]] is to be defined in such a way that if Γ ` e : T in the source language, then in the
target language, we should have:

∅; G+[[Γ]] ` E+[[Γ ` e : T ]] : T +[[T ]]

Define E+[[·]] on the typing judgments for (e1, e2) and fst e. You will need to introduce new
variables; give any side conditions needed to control the selection of variable names.
(Optionally, you can define E+[[·]] on the typing judgment for snd e as well, but you can skip that
because it should be symmetric to the definition for fst e.)

(d) (10 pts) Similarly, you can define E×[[·]] (and G×[[·]]). The translation function E×[[·]], when applied
to a source language typing judgment, produces a well-typed F× term. The function G×[[·]] that
maps all the types of variables in Γ into the target language F× can be defined as follows:

G×[[∅]] = ∅
G×[[Γ, x:T ]] = G×[[Γ]], x:T ×[[T ]]

Then E×[[·]] is to be defined in such a way that if Γ ` e : T in the source language, then in the
target language, we should have:

∅; G×[[Γ]] ` E×[[Γ ` e : T ]] : T ×[[T ]]

Define E×[[·]] on the typing judgments for inlT1+T2 e and case e0 of inl x ⇒ e1 | inr y ⇒ e2. If
you introduce new variables, give any side conditions needed to control the selection of variable
names.
(Optionally, again, you can define E×[[·]] on the typing judgment for inrT1+T2 e as well, but you
can skip that because it should be symmetric to the definition for inlT1+T2 e.)

(e) (10 pts) Show that the expressions that are your translations in 4(c) and 4(d) are well-formed.
For each translated expression, give a type derivation in which the tops of the proof tree are either
axioms or are judgments that you are assured of having because the source-language expression
is well-formed.
(To make your type derivations fit on the page, you can label a subtree and then show the
derivation for that subtree separately. You can also define abbreviations for lengthy expressions
or types that appear repeatedly. Of course, don’t overdo this! You want the end result to still be
readable without having to repeatedly refer to a key.)

4. Strong normalization (25 pts.)

(a) (20 pts) Show that all expressions in the language λ→+ are strongly normalizing by extending the
proof of strong normalization for λ→.

(b) (5 pts) Where does the proof fail if we add recursive types to the language?
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