
CS7480 Homework 1 Due: Noon, 25 Jan 2019

You may turn in handwritten solutions to this assignment—but make sure you write clearly and leave
lots of whitespace. If you choose to typeset your solutions, the LaTeX sources are available for your use at
the course website. (Look in cs7480.sty for macros you can use.) A pdf file containing the solutions can be
submitted via email.

This homework is worth 100 points.

1. Maybe Types (64 pts.)

In many languages (e.g., C, Java) it is convenient to have a special “null” value that acts like a member
of any reference type that is desired. However, the possibility that every reference may turn out to
be null also creates difficulties for both the programmer and the language implementer. One way to
have the expressive power of null without the undesirable side effects it to introduce a special type
constructor maybe that effectively augments any type τ with a special null value 〈〉. Because the
null value can be represented by a distinguished pointer value, a maybe τ is easily implemented just
as compactly as a C pointer or a Java reference. In this problem you will develop the semantics of
maybes.

We start with the simply-typed λ-calculus with booleans ((λ→) and extend it as follows:

Types τ ::= . . . | maybe τ

Terms e ::= . . . | 〈e〉 | 〈〉 | if 〈x〉 = e0 then e1 else e2

Values v ::= . . . | 〈v〉 | 〈〉

Informally, the extensions work as follows. The new introduction form 〈e〉 injects the value of e into
the corresponding maybe type. The introduction form 〈〉 is the special null value. The special if form
checks whether an expression e0 evaluates to a non-empty maybe; if so, the expression e1 is evaluated
with x bound to the injected value. If not, the expression e2 is evaluated instead.

(a) (4 pts) Assuming left-to-right evaluation and the values given above, extend the small-step oper-
ational semantics in Pierce (Chp. 9) to maybes. Do not use evaluation contexts. Show only the
new rules required to evaluate the maybe extensions shown above.

(b) (5 pts) Give any new typing rules that are required for the extended language.

(c) (20 pts) Extend the proofs of progress and preservation from λ→—as well as the proofs of any
lemmas that the proofs of progress and preservation rely on—to demonstrate type soundness for
this extended language λ→×. Also, when proving preservation, use induction on the derivation of
e −→ e′. The statements of the progress and preservation lemmas are as follows:

Lemma (Progress): If ` e : τ then either e is a value or there exists some e′ such that
e −→ e′.

Lemma (Preservation): If ` e : τ and e −→ e′, then ` e′ : τ .

(d) (18 pts) Give a typed translation from this language (λ→ extended with maybe) to the lan-
guage λ→+Unit (the simply-typed λ-calculus with sum types and type Unit). It should translate
type derivations in the source language (λ→ maybe) to terms with type derivations in the tar-
get language (λ→+Unit) , inductively demonstrating that any well-typed source term produces a
well-typed target term.

Specifically, first define a translation function T [[τ ]] that translates each source language type τ
to a target language type.

Next, define a type-preserving translation function E [[·]] that, when applied to a source language
typing judgment, produces a well-typed target term. It will be useful to have a function G[[·]] that
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simply maps the types of all the variables in Γ into the target language:

G[[∅]] = ∅
G[[Γ, x:τ ]] = G[[Γ]], x:T [[τ ]]

Now, define E [[·]] in such a way that if Γ ` e : τ in the source language, then in the target language,
we should have:

G[[Γ]] ` E [[Γ ` e : τ ]] : T [[τ ]].

(e) (8 pts) Define the weakest sound subtyping relationship on types maybe τ and maybe τ ′ and
justify it by defining the appropriate coercion function.

(f) (5 pts) Do the same for maybe τ and τ . Why would such a subtype relationship be helpful?

(g) (4 pts) Given the syntax of the language and the typing rules that you gave in part (b) above,
will every well-typed term in this language have a unique type? That is, does the Uniqueness of
Types theorem (Pierce, Theorem 9.3.3) hold? If so, briefly explain why that must be the case; if
not, briefly say why not, and give the minimal changes necessary to ensure uniqueness of types.

2. Subtyping (16 pts.)

For each of the following questions, answer Yes or No. If the answer is Yes, show the subtyping
derivation. If the answer is No, give either a term that demonstrates how type safety breaks if we
allow the two types in the subtype relation, or a short explanation of why type safety is preserved even
if we allow the two types in the subtype relation.

(a) (4 pts) Is {x : Top→ Ref Top} a subtype of {x : Top→ Top}?
(b) (4 pts) Is {x : Top→ Ref Top} a subtype of {x : Ref Top→ Ref {y : Top}}?
(c) (4 pts) Is {x : Ref {y : Top}} a subtype of {x : Ref Top}?
(d) (4 pts) Is {x : Top} a subtype of {x : { }}?

3. Strong normalization (20 pts.)

Let us add tagged sums to the simply-typed λ-calculus (λ→). We’ll denote this calculus λ→+.

Types τ ::= . . . | τ1 + τ2

Terms e ::= . . . | inlτ1+τ2 e | inrτ1+τ2 e | case e of inl x ⇒ e1 | inr y ⇒ e2

Values v ::= . . . | inlτ1+τ2 v | inrτ1+τ2 v

Eval. Contexts E ::= . . . | inlτ1+τ2 E | inrτ1+τ2 E | case E of inl x ⇒ e1 | inr y ⇒ e2

New reduction rules:

case inlτ1+τ2 v of inl x ⇒ e1 | inr y ⇒ e2 −→ e1[v/x] (E-CaseInl)

case inrτ1+τ2 v of inl x ⇒ e1 | inr y ⇒ e2 −→ e2[v/y] (E-CaseInr)

New typing rules:

Γ ` e : τ1

Γ ` inlτ1+τ2 e : τ1 + τ2
(T-Inl)

Γ ` e : τ2

Γ ` inrτ1+τ2 e : τ1 + τ2
(T-Inr)

Γ ` e : τ1 + τ2 Γ, x : τ1 ` e1 : τ Γ, y : τ2 ` e2 : τ

Γ ` case e of inl x ⇒ e1 | inr y ⇒ e2 : τ
(T-Case)

Show that all expressions in the language λ→+ are strongly normalizing by extending the proof of
strong normalization for λ→.
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