
Substructural Types
Justin Slepak

1 Three Structural Lemmas

Simply-typed �-calculus follows three “structural” lemmas.

Lemma 1.1. Exchange:

If � ` e : ⌧ and �0
is a permutation of �, then �0 ` e : ⌧ .

Lemma 1.2. Weakening:

If � ` e : ⌧ and x /2 dom(�), then �, x : ⌧ 0 ` e : ⌧ .

Lemma 1.3. Contraction:

If (�1, x2 : ⌧ 0, x3 : ⌧ 0,�2) ` e : ⌧ , then (�1, x1 : ⌧ 0,�2) ` e[x1/x2, x1/x3] : ⌧ .

Exchange allows the environment to be rearranged without a↵ecting typing
judgments. Weakening means that the type environment can be extended with
unused entries without a↵ecting typing judgments. Contraction lets multiple
environment entries with the same type be merged.

Substructural type systems do not uphold these properties. A relevant type
system eliminates only weakening and requires that every variable be used at
least once. An a�ne type system eliminates only contraction and prevents
variables from being used more than once. A linear type system eliminates both
weakening and contraction and mandates exactly one use of every variable. An
ordered type system removes all three properties and requires variables to be
used once each, in the order of their introduction.

2 �URAL

For practical purposes, it is more convenient to allow di↵erent variables to have
di↵erent usage restrictions. ATTAPL [3] presents a language which allows both
linear and unrestricted types. We will use �URAL [1], which allows unrestricted,
relevant, a�ne, and linear types. We start with a simple core language based
on simply-typed �-calculus:

2.1 Syntax

e ::= q n | q�x : ⌧.e | if0 e e e | (e e) | (op e e) | x (expressions)

v ::= q n | q�x : ⌧.e | x (values)

op ::= + | � | ⇤ (base operations)

⌧ ::= q p (types)

p ::= Int | ⌧ ! ⌧ (pretypes)

q ::= U | R | A | L (qualifiers)

E ::= E e | v E | (op E e) | (op v E) | (if0 E e e) (evaluation contexts)

1

2.2 Operational semantics

The operational semantics are essentially the same as for simply-typed �-calculus.
Certain terms, specifically �-abstractions and numeric literals, must carry ex-
plicit type qualifiers. The only way �-abstractions can be introduced (syntacti-
cally) necessitates specifying a qualifier, but (op e e) introduces a new number
without one, so we define it to have an unrestricted result:

(op (q1 n1) (q2 n2)) 7! (U Jn1 op n2K)

2.3 Infrastructure for typing

A � order relation is needed to express the typing rules. It is defined first
for pairs of qualifiers, and then lifted to operate on (type, qualifier) and (en-
vironment, qualifier) pairs. The relation on qualifiers is the reflexive-transitive
closure of:

U � R

U � A

R � L

A � L

The relation is lifted for types by (q p) � q

0 () q � q

0 and lifted for
environments by � � q () 8(x : q0 p) 2 �.q0 � q, i.e. every entry in � must
have a qualifier no more restrictive than q. The typing rules also rely on an
“environment splitting” judgment, �.

;� ; = ;

� = �1 � �2

�, x : ⌧ = (�1, x : ⌧)� �2

� = �1 � �2

�, x : ⌧ = �1 � (�2, x : ⌧)

� = �1 � �2 ⌧ � R

�, x : ⌧ = (�1, x : ⌧)� (�2, x : ⌧)

Intuitively, an environment can be split by partitioning into two separate en-
vironments. This does not introduce any weakening property, as every binding
must appear on at least one side of the split. Depending on how a type deriva-
tion is examined, it may be useful to think of them as a “merge” operation:
if a pair of environments can typecheck e1 and e2, their merge can typecheck
(e1 e2). The merge of two environments is undefined if they share any linear
or a�ne bindings, but relevant and unrestricted bindings may be shared by the
two environments being merged. This introduces a limited form of contraction
that only applies to relevant and unrestricted variables.

2

2.4 Typing

�1 ` e : ⌧ �2 � A

(T-Weaken)
�1 � �2 ` e : ⌧

(T-Var)
•, x : ⌧ ` x : ⌧

(T-Int)
• ` q n : q Int

Typing a numeric literal requires the empty environment, and typing a vari-
able requires an environment containing only that variable. The explicit weak-
ening rule allows the empty or singleton environment to be expanded by adding
bindings to match the larger environment that actually describes the current
scope, but we can only add variables which are neither relevant nor linear (it
also gives us the exchange property in the same way as TAPL’s T-Var rule
does). ATTAPL’s presentation of the typing rules rolls the use of weakening
into the variable and base-value literal rules.

�1 ` e

if

: q Int �2 ` e

then

: ⌧ �2 ` e

else

: ⌧
(T-If0)

�1 � �2 ` (if0 e

if

e

then

e

else

) : ⌧

Any a�ne and linear variables used in e

if

are unavailable for use in e

then

and e

else

. Relevant and linear variables not used in e

if

must be used in e

then

and e

else

. The environment splitting handles this arrangement.

� � q �, x : ⌧1 ` e : ⌧2
(T-Abst)

� ` q�x : ⌧.e : q(⌧1 ! ⌧2)

A closure that references already-bound variables must respect their linear,
a�ne, or relevant restrictions, so the same restrictions must apply to the closure
itself. T-Weaken allows variables not referenced by this closure to be excluded
from the environment used to typecheck it.

�1 ` e1 : q(⌧ ! ⌧

0) �2 ` e2 : ⌧
(T-App)

�1 � �2 ` (e1 e2) : ⌧ 0

�1 ` e1 : q1Int �2 ` e2 : q2Int
(T-Arith)

�1 � �2 ` (op e1 e2) : U Int

The reasoning in T-App and T-Arith is similar to that for T-If0. Variables
consumed by e1 are unavailable for e2. Arithmetic operators are defined to
produce unrestricted values.

3

3 Language Extensions

We now extend the language with several new features, all of which have been
seen in class as extensions for �-calculus, but some complications are introduced
by substructural typing.

3.1 Pairs and product types

e ::= . . . | q < e, e > | ? (expressions)

v ::= . . . | q < v, v > (values)

p ::= . . . | ⌧ ⇥ ⌧ (pretypes)

E ::= . . . | q < E, e > | q < v,E > (evaluation contexts)

The pair introduction form is obvious (simply add a qualifier); the immediate
problem is how to construct an elimination form for pairs. Before, we used fst

and snd operators to extract individual elements, but this keeps us from being
able to access both terms of a linear or a�ne pair. Instead of fst and snd, we
introduce a new binding form:

e ::= . . . | letpair e < x, x > e (expressions)

E ::= . . . | letpair E < x, x > e (evaluation contexts)

This form simultaneously binds both elements of a pair in another expression,
so both elements can be accessed with a single use of the pair. We extend the
operational semantics:

(letpair (q < v1, v2 >) < x1, x2 > e) 7! e[v1/x1, v2/x2]

Type checking is substantially similar to the structurally-typed �-calculus,
but we have a few restrictions on qualifiers. We should not allow, for example,
an unrestricted pair of a�ne values, as the pair could be duplicated, bypassing
the a�ne restrictions for its contents. So we require that a pair’s qualifier be at
least as restrictive as the qualifiers of its contents.

�1 ` e

l

: ⌧
l

�2 ` e

r

: ⌧
r

⌧

l

� q ⌧

r

� q

(T-Pair)
�1 � �2 ` (q < e

l

, e

r

>) : q (⌧
l

⇥ ⌧

r

)

Type checking a letpair looks similar to type checking a �-abstraction,
except two variables are introduced into the environment used to check the
body.

�1 ` e

arg

: q (⌧1 ⇥ ⌧2) �2, x1 : ⌧1, x2 : ⌧2 ` e

body

: ⌧
(T-LetPair)

�1 � �2 ` (letpair e

arg

< x1, x2 > e

body

) : ⌧

4

3.2 Sum types

e ::= . . . | q inL
p

e | q inR
p

e (expressions)

| case e (inL x) e) (inR x) e)

v ::= . . . | q inL
p

v | q inR
p

v (values)

p ::= . . . | ⌧ + ⌧ (pretypes)

E ::= . . . | q inL
p

E | q inR
p

E (evaluation contexts)

The associated semantic extension is straightforward:

(case (q inL
p

v) (inL x

l

) e

l

) (inR x

r

) e

r

)) 7! e

l

[v/x
l

]

(case (q inR
p

v) (inL x

l

) e

l

) (inR x

r

) e

r

)) 7! e

r

[v/x
r

]

Again, typing a sum requires preventing usage restrictions from being by-
passed by wrapping a value in a less restrictive sum type (but consider what
happens if we modify our typing rules to allow something like U (U p1) + (L p2)
or U (L p1) + (L p2) to be a well-formed type).

� ` e : ⌧
l

⌧

l

� q ⌧

r

� q

(T-inL)
� ` (q inL

⌧l+⌧r e) : q (⌧
l

+ ⌧

r

)

� ` e : ⌧
r

⌧

l

� q ⌧

r

� q

(T-inR)
� ` (q inR

⌧l+⌧r e) : q (⌧
l

+ ⌧

r

)

�1 ` e : q (⌧
l

+ ⌧

r

) �2, xl

: ⌧
l

` e

l

: ⌧ �2, xr

: ⌧
r

` e

r

: ⌧
(T-Case)

�1 � �2 ` (case e (inL x

l

) e

l

) (inR x

r

) e

r

)) : ⌧

3.3 Recursive types

e ::= . . . | fold
p

e | unfold e (expressions)

v ::= . . . | fold
p

v (values)

p ::= . . . | ↵ | µ↵.⌧ (pretypes)

E ::= . . . | fold
p

E | unfold E (evaluation contexts)

(unfold (fold
p

v)) 7! v

Again, the concern is to prevent wrapping one type in a less restrictive type.
We will let a folded expression keep the same qualifier as the pre-fold expres-
sion, i.e. the qualifier outside a µ↵.⌧ pretype is ignored with use restrictions
coming from ⌧ ’s qualifier. Because of the addition of type variables, we must
introduce a type variable environment, �, to check that types are well-formed.

5

� ` e : ⌧ [µ↵.⌧/↵] • ` ⌧ [µ↵.⌧/↵] � q

(T-Fold)
� ` (fold

µ↵.⌧

e) : q µ↵.⌧

� ` e : (q µ↵.⌧)
(T-Unfold)

� ` (unfold e) : ⌧ [µ↵.⌧/↵]

The typing rules for fold and unfold are straightforward and similar to
the rules without substructural types. We cannot have type variables appear
anywhere but a µ↵.⌧ pretype, so we require that the empty environment be
enough to prove our types to be well-formed. In proving this, it is necessary
to alternate (mutually recursively) between proving well-formedness of a type
and well-formedness of a pretype. We introduce this as a judgment that p is a
well-formed pretype, p : P, or that ⌧ is a well-formed type, ⌧ : T, but � contains
only pretype variables. The rules for well-formedness are fairly intuitive, and
there is only one way for variables to be introduced into the environment:

� ` p : P

� ` (q p) : T

�,↵ ` ⌧ : T

� ` µ↵.⌧ : T

� ` ⌧ : T � ` ⌧

0 : T

� ` q (⌧ ! ⌧

0) : T
� ` ⌧ : T � ` ⌧

0 : T

� ` q (⌧ + ⌧

0) : T

� ` ⌧ : T � ` ⌧

0 : T

� ` q (⌧ ⇥ ⌧

0) : T

We also bring � into our judgments for �. At this point, we needn’t ref-
erence � when comparing qualifiers, but we use it in lifting � for types and
environments.

3.4 Polymorphism

e ::= . . . | q⇤↵.e | ehpi | q⇤⇠.e | ehqi (expressions)

v ::= . . . | q⇤↵.e | q⇤⇠.e (values)

p ::= . . . | 8↵.⌧ | 8⇠.⌧ (pretypes)

q ::= . . . | ⇠ (qualifiers)

E ::= . . . | Ehpi | Ehqi (evaluation contexts)

We quantify separately over pretypes and qualifiers. This allows a quantified
type to express that a function “works on Ints of any restriction level” (e.g. a
purely arithmetic function) or “works for any unrestricted ↵” (e.g. a type sig-
nature for Church numerals) or “works on any types” (e.g. curry and uncurry).
This syntax extension keeps ↵ as the generic pretype variable and introduces ⇠
as the generic qualifier variable. The corresponding semantic extension follows:

(q⇤↵.e)hpi 7! e[p/↵]

(q0⇤⇠.e)hq1i 7! e[q1/⇠]

Rather than requiring the programmer to explicitly specify a qualifier and
pretype which will only be used with each other, we could even allow quantifi-
cation over full types, introducing type variables and type application.

6

e ::= . . . | q⇤↵.e | ehpi (expressions)

v ::= . . . | q⇤↵.e | q⇤⇠.e (values)

⌧ ::= . . . | � (types)

E ::= . . . | Eh⌧i (evaluation contexts)

Checking pretype-polymorphic terms is similar to checking them in System
F. Permitting qualifier polymorphism in addition to pretype polymorphism re-
quires that our � also track qualifier variables (if pretype, qualifier, and type
variables are to be drawn from the same set of identifiers, � must track ↵ : P,
⇠ : Q, and � : T bindings, indicating whether a type-level variable represents
a pretype, qualifier, or full type). At this point, we must also convert our old
typing rules to use � in addition to �, as type-level variables may appear in
expressions. We thread � through the old typing rules to ensure that types are
well-formed, but none of the old rules are able to modify � (T-Fold must be
changed to use � in place of •). The introduction of qualifier variables means
that we now need� to determine whether � = �1��2; our old typing rules must
replace the �1 � �2 ` e : ⌧ presentation by adding a premise � ` � = �1 � �2

and rewriting the conclusion as � ` e : ⌧ . In order to handle qualifier variables
in both new and old typing rules, we must also extend our � relation. We have
U as the least restrictive qualifier and L as the most restrictive, so we can add
U � ⇠ and ⇠ � L to the relation. However, knowing nothing more about ⇠ means
we cannot extend the order any further.

� � q �,↵ : P;� ` e : ⌧
(T-PreAbst)

�;� ` q⇤↵.e : q8↵.⌧

�;� ` e : q8↵.⌧ � ` p : P
(T-PreApp)

�;� ` ehpi : ⌧ [p/↵]

� � q �, ⇠ : Q;� ` e : ⌧
(T-QualAbst)

�;� ` q⇤⇠.e : q8⇠.⌧

�;� ` e : q08⇠.⌧ � ` q : Q
(T-QualApp)

�;� ` ehqi : ⌧ [q/⇠]

� � q �,� : T;� ` e : ⌧
(T-TypeAbst)

�;� ` q⇤�.e : q8�.⌧

�;� ` e : q8↵.⌧ 0 � ` ⌧

0 : T
(T-TypeApp)

�;� ` eh⌧i : ⌧ 0[⌧/↵]

7

3.5 State

e ::= . . . | q new e | free e | rd e | wr e e | sw e e (expressions)

v ::= . . . | l 2 Locations (values)

p ::= . . . | ref ⌧ (pretypes)

E ::= . . . | new q E | free E | rd E | wr E e | wr v E (evaluation contexts)

| sw E e | sw v E

This extension places “locations,” i.e. names of reference cells, which can be
used alongside the store’s variable mappings or in a store machine which simply
operates on the control string and does not introduce variable mappings into
the store.

The machine-oriented operational semantics for state maps a location to
both its usage restrictions and its contents. The reason for having sw, a swap
operation, in addition to rd and wr arises from typing restrictions and will be
explained with the typing rules.

(S ; q new v) 7! (S, l) (q v) ; l)

((S1, l) (q v), S2) ; free l) 7! ((S1, S2) ; v)

((S1, l) (q v), S2) ; rd l) 7! ((S1, l) (q v), S2) ; L < l, v >)

((S1, l) (q v), S2) ; wr l v

0) 7! ((S1, l) (q v

0), S2) ; l)

((S1, l) (q v), S2) ; sw l v

0) 7! ((S1, l) (q v

0), S2) ; L < l, v >)

A reference cell that can only be accessed once is not useful, so accesses to a
reference cell include a new instance of the reference in their return value. In the
case of rd and sw, this necessitates constructing a pair so that the contents of
the cell can also be returned. The pair is linear to avoid illicit duplication both
of the reference and of the returned cell contents (recall that a pair type must
be at least as restrictive as either of its component types). If either of these is
legal to duplicate, that duplication can be performed after splitting the pair. It
is important to remember that the q in a q(ref⌧) refers not to the reference cell
or the data it contains but to the reference itself. The ⌧ behaves according to its
own qualifier, and the reference cell remains in the heap until freed (explicitly
or by a garbage collector). This brings up the question of what operations are
compatible with what combinations of reference and data qualifiers.

� ` q � A � ` q

0 � A �;� ` e : q0 p
(T-NewUA)

�;� ` new q e : q (ref q

0
p)

� ` R � q �;� ` e : ⌧
(T-NewRL)

�;� ` q new e : q (ref ⌧)

8

Separate typing rules are needed for constructing unrestricted/a�ne refer-
ences and relevant/linear references. An unrestricted or a�ne reference cell may
never be accessed, so it cannot contain relevant or linear data. On the other
hand, a relevant or linear reference cell is guaranteed to be accessed, so it can
contain anything (though the set of allowable operations will still depend on the
qualifier of the cell contents). Notice that we are not confined according to the
� lattice: it is legal for a relevant reference cell to contain a�ne or linear data
or for an unrestricted cell to contain a�ne data.

�;� ` e : q (ref ⌧) � ` A � q

(T-Free)
�;� ` free e : ⌧

A relevant or unrestricted reference might still be used again later in the
program, so freeing it is unsafe. Because this is a use of the reference, we can
be sure that an a�ne or linear reference will not be used after it is freed.

�;� ` e : q (ref ⌧) � ` ⌧ � R

(T-Read)
�;� ` rd e : L ((q ref ⌧)⇥ ⌧)

Multiple read references (possible due to the non-destructive nature of rd,
as opposed to free) makes it possible to duplicate the contents of a reference
cell. This is not permissible if the cell contains a�ne or linear data.

� ` � = �1 � �2 �;�1 ` e1 : q (ref ⌧)
�;�2 ` e2 : ⌧ � ` ⌧ � A

(T-WeakWrite)
�;� ` wr e1 e2 : q ref ⌧

The typing rule for weak (i.e. type-preserving) writes must ensure compat-
ibility between the reference and contents expressions, i.e. that the program is
writing a ⌧ into a ref ⌧ . It must also ensure that the program is not overwriting
a relevant or linear value because that would allow such values to be destroyed
without ever being used.

� ` � = �1 � �2 �;�1 ` e1 : q (ref ⌧) �;�2 ` e2 : ⌧
(T-WeakSwap)

�;� ` sw e1 e2 : L ((q ref ⌧)⇥ ⌧)

What can we do with reference cells that contain linear data? Reading
requires the contents to be no more restricted than R. Writing requires the
contents to be no more restricted than A. Tracking whether a cell has been
referenced already in order to decide whether to allow reading/writing is too
complicated. Instead, we require that the cell contents always keep a “not-yet-
used” status. Then we can take a linear (or less restricted) value out of a cell
by exchanging it with another value of the same type. This allows us to write
the cell contents without the ⌧ � A requirement and to read the cell contents
without the ⌧ � R requirement.

9

� ` � = �1 � �2 �;�1 ` e1 : q (ref ⌧)
�;�2 ` e2 : ⌧ � ` ⌧ � A

� ` A � q � ` ⌧

0 � q

(T-StrongWrite)
�;� ` wr e1 e2 : q ref ⌧

In order to make a strong (i.e. type-altering) write, we must be certain that
the reference in question is unique (i.e. a�ne or linear) so that typechecking
other parts of the program does not need to consider whether this reference
has changed its type. We also require that the new content type be permissive
enough to be allowed in this reference (e.g. a relevant reference cannot be
updated to contain a�ne data, but a linear reference can).

� ` � = �1 � �2 �;�1 ` e1 : q (ref ⌧) �;�2 ` e2 : ⌧
� ` A � q � ` ⌧

0 � q

(T-StrongSwap)
�;� ` sw e1 e2 : L ((q ref ⌧)⇥ ⌧)

The same restrictions added for strong writes also apply to strong swaps.

4 Progress and preservation for �UAL

Our type system is meant to ensure certain values are not used multiple times.
In order to state progress and preservation for this system in such terms, we
must express the operational semantics in terms of a machine with a variable
store. To show how the store is updated by accesses to a�ne and linear variables,
we must define a ⇠

q

operation:

S ⇠
U

x = S

(S1, x 7! v, S2) ⇠A

x = (S1, S2)

(S1, x 7! v, S2) ⇠L

x = (S1, S2)

This removes a�ne/linear entries from the store upon use. The machine’s
strategy will be to select an evaluation context and then evaluate the expression
in its hole.

(S; e) 7!
�

(S0; e0)

(S;E[e]) 7! (S0;E[e0])

The machine-oriented semantics reduces expressions to variables, which refer
to data in the store. Not all of the rules are given here, as they are straightfor-
ward transformations from the expression-only semantics. The general theme is
that steps which compute new values create new store entries with fresh names.

10

(S ; q n) 7!
�

(S, x 7! q n ; x),

with fresh x

((S1, x 7! q 0, S2); (if0 x e1 e2)) 7!�

((S1, x 7! q 0, S2) ⇠q

x ; e1)

((S1, x 7! q n, S2) ; (if0 x e1 e2)) 7!�

((S1, x 7! q 0, S2) ⇠q

x ; e2),

where n 6= 0

(S ; q�x1 : ⌧.e) 7!
�

(S, x0 7! q�x1 : ⌧.e ; x0),

with fresh x0

((S1, x0 7! q�x1 : ⌧.e), S2) ; (x0 x2)) 7!�

((S1, x0 7! q�x1 : ⌧.e, S2) ⇠q

x0 ;

e[x2/x1])

(S ; (q < x

l

, x

r

>)) 7!
�

((S, x0 7! (q < x

l

, x

r

>)) ; x0),

with fresh x0

etc.

We also require a notion of store typing. In essense, we map a store to an
environment, which should then be capable of typechecking the expression the
machine has at the same time as it has that store. Thus, already-used a�ne
and linear variables are excluded from the environment.

` ; : ;
` S : �� �0 �0 ` x : ⌧

` S, x 7! v : �, x : ⌧

Finally, we combine our rules in order to judge well-typedness for machine
states, i.e. store/expression pairs:

` S : � � ` e : ⌧

` (S ; e)

This gives us the machinery we need to state progress and preservation.

Theorem 4.1. Progress:

If ` (S ; e), then 9S0
, e

0
.(S ; e) 7! (S0 ; e0) or e is a value.

Theorem 4.2. Preservation:

If ` (S ; e) and (S ; e) 7! (S0 ; e0), then ` (S0 ; e0).

But what about relevant types? Our machine knows exactly when to elimi-
nate linear and a�ne variables, but removing a relevant variable is unsafe as it
may be used again in the future (i.e. progress would be lost). We also cannot
simply leave it there because the machine will eventually reach a state where
the corresponding � will fail to typecheck its control expression (i.e. preserva-
tion would be lost). We can introduce a “used” flag into each store entry. On
creation, the flag is clear, and it is set when the variable is used by the control
string redex (this flag only needs to be managed for relevant variables). The
environment we get from store typing would also track whether relevant entries
are already-used, and they can be considered as subject to T-Weaken.

11

5 Algorithmic type checking for �UAL

In order to derive � ` e : ⌧ , the type checker must often choose how to split �
into �1 and �2. If a mechanical type checker failes to prove � ` e : ⌧ , then it must
backtrack and try again with di↵erent �1 and �2 until it knows that no choice of
�1 and �2 will work. To avoid nondeterminism in type checking, we introduce
the “output environment” associated with a typing judgment: � ` e : ⌧ // �0.
�0 contains all entries from � not “used up” in deriving e : ⌧ . We then replace
�, the “environment splitting” operation, with ÷, a deterministic “environment
di↵erence” operation:

�÷ ; = �

�1 ÷ �2 = �3 (x : ⌧) /2 �3 A � ⌧

�1 ÷ (�2, x : ⌧) = �3

�1 ÷ �2 = �3 �3 = �4, x : ⌧,�5 ⌧ � U

�1 ÷ (�2, x : ⌧) = �4,�5

We use this operation to remove variables at the end of their scope, and
we ensure at removal that the variables are not a�ne or linear variables left
untouched during their scope. We accept a term as well-typed if the output
environment contains no linear variables.

(A-Int)
� ` q n : q Int // �

⌧ � U

(A-UVar)
�1, x : ⌧,�2 ` x : ⌧ / �1, x : ⌧,�2

A � ⌧

(A-ALVar)
�1, x : ⌧,�2 ` x : ⌧ // �1, x : ⌧,�2

Using an integer or unrestricted variable does not alter the environment,
whereas using a linear variable requires that it be removed from the output
environment.

�1 ` e1 : ⌧ ! ⌧

0
// �2 �2 ` e2 : ⌧ // �3

(A-App)
�1 ` (e1 e2) : ⌧ 0 // �3

�1 ` e1 : q Int // �2 �2 ` e2 : q0 Int // �3
(A-Arith)

�1 ` (op e1 e2) : U Int // �3

Checking multiple subexpressions chains the environment changes together.
Variables consumed by e1 are unavailable for e2. Variables consumed by either
e1 or e2 are considered consumed by (e1 e2) or (op e1 e2).

12

�1, x : ⌧ ` e : ⌧ 0 // �2 q � U) �2 ÷ (x : ⌧) = �1
(A-Abst)

�1 ` q�x : ⌧.e : q (⌧ ! ⌧

0) // �2 ÷ (x : ⌧)

Giving �2÷(x : ⌧) as the output environment for typechecking a �-abstraction
removes the parameter variable from the environment at the end of its scope.
In the case of an unrestricted closure, we use the �2 ÷ (x : ⌧) = �1 requirement
to ensure the closure does not use any linear variables from its environment. If
it does, �2 will have them removed, and �2÷ (x : ⌧) will exclude those bindings.

�1 ` e

if

: q Int // �2 �2 ` e

then

: ⌧ // �3 �2 ` e

else

: ⌧ // �3
(A-If0)

�1 ` (if0 e

if

e

then

e

else

) : ⌧ // �3

This rule is similar to T-App and T-Arith. By mandating the same output
environment when checking e

then

and e

else

, we require that they comsume the
same linear variables.

13

References

[1] Amal Ahmed. A step-indexed model of substructural state. In In: Proc.

International Conference on Functional Programming. (2005) 7891, pages
78–91. ACM Press, 2005.

This paper describes �

URAL. The implications of substructural
reference types are the most important insight for this lecture.
Included is a table describing what data may be stored in and
operations may be performed on reference cells according to their
qualifiers. Instead of progress and preservation, type soundness is
proven via a step-indexed logical relation.

[2] Greg Morrisett, Amal Ahmed, and Matthew Fluet. L 3 : A linear language
with locations. In In Seventh International Conference on Typed Lambda

Calculi and Applications, pages 293–307, 2005.

This paper describes a language which uses substructural state to
allow strong updates of reference cells. Because a linear reference
cell is only accessible from one part of the program at a time, the
type checker is able to track type-changing updates to the cell.

[3] Benjamin C. Pierce, editor. Advanced Topics in Types and Programming

Languages. MIT Press, 2005.

Chapter 1 covers substructural types, with an emphasis on a type
system which includes linear and unrestricted types (but not a�ne
or relevant types). Topics not covered in this lecture include: or-
dered types, which eliminate all three substructural lemmas men-
tioned at the beginning; reference-counted types, which introduce
a controlled way to duplicate a�ne or linear references; a language
system which uses a�ne types to control the time a function may
expend while running; and compiler optimizations which can take
advantage of the information carried by type qualifiers.

14

