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1 Why should | care?

Let’s assume we're in A_,with products.
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How do we encode triples that contain elements of the same type?
Triplea=a X a X a

Easy, right? That’s what we’ve been doing all semester. But let’s stop for a second and think: what is this
thing? What kind of object is this is A_,? The answer is: it’s not.

All this time, we’ve been appealing to our meta-language to compensate for the insufficient abstraction
facilities of our language. Triple is really a type macro, not an object in our language.

Next question: what does it mean? Well, it kind of looks like a function definition of some sort, so we
could assume that it performs some kind of substitution. But we can’t really be sure, since we don’t really
have semantics for our meta-language.

More questions remain: what’s the scope of this “definition”? This side of the board? The rest of the
lecture? Who gets to define these shorthands? The designer of the type system? Should programmers using

the system be in on the fun?

In the rest of the lecture, we’ll give these constructions meaning by including them in the type system.



2 Type Operators and Kinding

We’ve decided that we wanted to add things like Triple to our type system. Now the question is: where do
we put them? They work with types, so it seems sensible to put them at the type level. Now, how do should
we represent them? They clearly are some kinds of functions, so let’s represent them as functions. Since we
have functions, we also need variables and applications.

Ti= .. | a | T | TT
Groovy. Let’s see what Triple looks like.
Triple = Aa.a X a X «
Awesome. Can we find a term that inhabits it?
Oh.

It seems that there really are multiple kinds of things at the type level, and not all of them classify terms.
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We'll call those types that classify terms proper types and we’ll call the others type operators. Now, what
about stuff like:

Triple Triple

Yeah, that makes no sense. We want to rule that out. Now remember, what did we use to rule out terms
that made no sense? That’s right, a type system! This suggests that we need a “type system” for types,
too. To avoid confusion, we’ll call that a kind system, since kinds are the “types” of types.

* * — % Kk = %
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Let’s design our kind system. What do you think it’s going to look like? Well, our type level looks an
awful lot like the term level for A_,, doesn’t it? So, let’s ask ourselves, What Would A_, Do? The only thing
missing is the annotations on the abstractions, so let’s add them.

Tu= ... | dank.T



Let’s note that this annotation is a kind annotation.

Based on our intuition, let’s define the kind system by mimicking A_,’s type system. Just like A_,needs
a type environment (I'), we will need a kind environment (A).

A= 0 | Ajauk
We'll have two classes of kind expressions. *, for proper types, and xk = x for type operators.
Ku= % | K=K

Now we have all the pieces to define the kinding judgement. This is what it means for a type to be
well-kinded.
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This looks just like the typing rules for A\_,, as expected. The arrow and product rules look just like the
rule for A_.’s + and similar operations, which makes sense, given that — and x are just base operations on

types.

Let’s typecheck some terms now. Oh wait, do we need to update the typing judgement? We at least
need to make sure that the types in our program are well-kinded. The abstraction rule is the only one that
introduces types, so it’s the only one we need to update.

T-ABs
S Tx:mmbe:n

I'Xeim.e:m —

Now we can typecheck programs. Let’s try this one:

Az:(Triple Int). fst a
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atxbaxaxa:x
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R Aok aXxaXak =k - Int o
K-Aprp
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DEF-TRIPLE - .
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- F Az:(Triple Int). fst  : (Triple Int) — ?

See how the typing judgement “calls out” to the kinding judgement? That part works out perfectly.!
However, what happens on the right side?

x : (Triple Int) - fst = : ?

1Except that Triple is still defined at the meta-level. We’ll fix that soon. If it makes you happy, you can replace Triple with
its definition wherever it appears.



fst needs something of some pair type, but gets something of type
(Ao x.ax axa)Int

so we're stuck. What do we do?

Clearly, we need a way to express that this type is equivalent to Int x Int x Int. Let’s define a type
equivalence relation!

T=T
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Q-REFL _ _ "n_ s _ _ _ _
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Now let’s plug it in our typing relation to get rid of our earlier stalemate.

T-EQ
'ke:7 =T STk
F'kFe:r
Let’s see if that actually fixes our problem.
Q-APPABS
(Aaz:*.a X a x a) Int = Int x Int x Int -FInt :: %
T-VAR - - - K-ProD
2 : (Triple Int) F « : (Triple Int) (Triple Int) = Int x Int x Int -+ Int X Int x Int :: * TE
2 : (Triple Int) F 2 : Int x Int x Int -
T-Fst

x : (Triple Int) F fst  : Int

It does, great.

So, what have we done? We have extended A_,with type operators, which are basically type-level func-
tions. To do that, we needed to define a “type system” for types, and check well-kindedness of types as part
of the typechecking process. We also needed to define a type equivalence relation, otherwise we’d have no
way to actually use our new type operators. The resulting system is called A\,. A full definition (all in one
place) is presented in the appendix.

Before we move on, some observations:
e We didn’t add anything to A_,’s term level. All the action happened at the type level.

e We now have two As, one for the term level, one for the type level. Once we add System F' to the mix,
it will get even more fun.

e The kinding judgement only needs A, not I'. Similarly, the typing judgement only needs I', not A.

e When the typing relation calls out to the kinding relation, it always does do with an empty A. Why
is that? Well, terms can’t bind type variables, so they can’t contribute anything useful to the kinding
judgement. That will change soon.



3 Aside: Why Stop at Kinds?

We just added “types” to types. Couldn’t we do the same for kinds?
Type systems answer: Kinds ought to be enough for anybody.

Math answer: Sure, let’s call the next level up sorts and keep going! This is the pure type systems
framework.

4 Higher-Order Polymorphism

We’ve achieved the first half of our motivation: we now know what Triple means. But the second half still
remains: when we write

Triple = da:k.a X a X «

what’s the scope of this definition, and who gets to define these?

The answer lies with System F. With System F', terms can bind types, so we can do things like:
(ATriplelnt. ...) Int x Int x Int

and use TripleInt as a type in our program. Intuitively, if we were to combine A\, and System F', we would
be able to express things like:

(ATriple. (ATriplelnt. ...) (Triple Int)) Aa::k. o X a X «

2 In this example, the scope of Triple is clearly defined, and it’s obvious that anyone can define their own
type operators, which is what we set off to achieve. Let’s see what the combination of A, and System F
would look like.

We will extend our definition of A\, to include System F. Most of the changes will be similar to those
that turn A_into System F. First, we extend the term syntax to include type abstraction and application:

ex= ... | Aazk.e | e[7] vi= ... | Aackee

Since we want to be able to abstract over both proper types and type operators (as seen in our example),
we need a kind annotation on the As. We could have added these annotations in System F' too, but since it
has only one kind (%), they wouldn’t be especially useful.

Then, we add universal types (again with kind annotations) to the grammar of types.
Tu= ... | YaukT

Kinds and environments are unchanged from A,. A still maps type variables to kinds, unlike System
F’s, which just contains type variables (or maps them all to x, if you prefer).

We need to extend the kinding and type equivalence relations for universals.

K-ALL
Ao kb T
A FVYVauk.T ox

2However, since Triple and Triplelnt are bound by a A, they would be abstract types. To be able to use these types in a
non-abstract way, we’d need to package them as existentials. Type definition is tricky.



Q-ALL
T=T

!

Yok T = Voo

Finally, we need to update our typing rules to carry As around, like in System F', and add new rules for
type abstraction and application.

TV T-ABs T-App

VAR (r = T(x)) JANI ol S Alx:mbe:m ATkHey:m — 1 A;TFey:m

ATHax: 7 TELE AT Edeim.e:m — 7 A;T'Heyex:mo

T-EQ T-TABs T-TAppP

ATkFe:7 =T Al 1% Aok ke T A;TFe:Vak.T AFT kK
AiTke:T AT Aacsik. 7 Vack.r AT Eelr]:7[r'/a]

Some observations:

e In the abstraction and type equality rules, we now need A from the term level to do kind-checking,
why is that? Since terms can now bind types, information about the kinds of type variables can now
be found in terms, which means that terms can now provide useful information to the kinding relation.

e The type well-formedness condition in System F’s type application rule now uses the (more interesting)
kinding relation®. And of course, the type argument needs to be of the right kind.

The system we have at this point is called the higher-order polymorphic A-calculus, F,, (with products).

5 Aside: F' What?

The w in F, is no accident. F,, can be defined as the limit of a hierarchy of type systems, which we will call
F17 FQ, etc.

The base case, F1, is A_,. The only kind is *, and no quantification or type abstraction is allowed. F5 is
the second-order A-calculus, System F. Still only one kind, but quantification is allowed.

In general, we define a hierarchy of kinds:
Ki=0
Ky = {*} U {Iil = I<L2|K1 € K; Nky € KZ'+1}
K, = U K;
i>1

Each F;;1 can quantify over types with kinds in K11 and abstract over types with kinds in K.

F3 is the first system where kinding and type equivalence become interesting. At that point, we can
quantify over type operators. It is also the last one to not be considered esoteric.*

F,, is the limit of that hierarchy, where we can abstract and quantify over anything (provided everything
is layered appropriately).

3In a sense, System F also has a kinding relation, but it’s equivalent to “Is this term closed?”. Interestingly, this corresponds
to the untyped A-calculus’s “typing” relation.
4By Pierce, at least.



6 The )\ Cube

If we look carefully at the systems we defined so far, we can see patterns emerge.

In A, terms (functions) can abstract over terms. This is reflected in the typing rules by the presence of
I, which holds information provided by terms (functions) that is necessary to type-check other terms (their
bodies).

In A, types (type operators) can abstract over types. This is reflected in the kinding rules by the pres-
ence of A, which holds information provided by types (type operators) that is necessary to kind-check other
types (their bodies). This is in addition to terms abstracting over terms.

In System F', terms (type abstractions) can abstract over types. This is reflected in the typing rules
by the presence of A, which holds information provided by terms (type abstractions) that is necessary to

kind-check some types (their bodies). This is in addition to terms abstracting over terms.

In F,, all three forms of abstraction are possible. As such, the typing relation features both I' and A,
and the kinding relation features A.

At this point, we can draw a nice square diagram to represent the relationship between these systems,
let’s call it the \ square:

F—F,

Ay —

The systems on top feature terms abstracting over types and the ones on the right feature types abstract-
ing over types.

Now, if we look for a pattern in these patterns, we come to the following conclusion: What about types
abtracting over terms? To represent that, we can add a third axis to our diagram. This axis corresponds to
dependent types.® We end up with the \ cube:

—CC

LF

51 won’t say more on the subject. Paul will go into more detail tomorrow.



7 Soundness

The presence of computation at the type level in A\,and F,changes the proof of type soundness in intersting
ways. We will briefly go over the structure of the proof to see what changes.

7.1 Before We Begin

As nice as our type equivalence relation is, having a directed, “computational” relation will be convenient
when doing the proof. Let’s define a notion of parallel type reduction,® which we will then prove to be
equivalent to the type equivalence relation.

!

T=T
QR-ArRROW QR-ALL QR-ABs
QR-REFL ’ ’ ’ /
=" Ty = Ty T=T T=T
T=T TL = Ty = T — T4 Yok T = Vo1 Aok T = dacik. 7!
QR-APP QR-APPABS
T =T Ty = T4 T=17 Ty = T4
TL To = T| Ty Ak T) 1o = 7'[15/ ]

Lemma: 7=7iff 1 <* 71/
Proof:

e Case <—: Obvious.

e Case —: The main mismatch between = and <=* is that = can use symmetry and transitivity
whenever, while <=* can only use them at the outermost level (i.e. not when deriving =).
The key insight is that any derivation for 7 = 7’ can be transformed into a chain of derivations

— — I
T=T1,T1 =T2y...3,Tpn =T

none of which use transitivity, and only use transitivity at the end, or not at all.

In addition, we need to make sure that = is confluent, to ensure that two equivalent terms are guaranteed
to eventually reduce to the same thing. The proof is not especially interesting; our type language is basically
A_,, so the proof of confluence is very similar.

7.2 Preservation

As usual, to prove preservation, we need an inversion lemma.

Lemma (Inversion):
1. T A;THAzer].e:mp = 1o then 1 =71 and A;T 2 :7f Fe: . Also, AF 7 i %
2. If A;T F Aaciky.e s Vaiike. 7 then kK1 = ko and A, kT e 7.
To prove that, we will need an intermediate lemma:
Lemma (Perservation of shapes under reduction):
1. f 7y —» 79 =* 7/ then 7/ = 7{ — 7} with 4 =* 7{ and 7, =" 7.

2. If Vauk. 7o =* 7/ then 7/ = Vau:k.7) with 7o =* 7.

6This proof technique is used elsewhere as well. See, for example, Belo et al. 2011.



Proof is by straightforward induction.

Once we have the inversion lemma, the proof of preservation is mostly straightforward. The interesting
case is the type application case, which needs a type substitution lemma (just like the application case needs
a term substitution lemma).

Lemma (Type substitution):

1. f Aja: &' Frkand AE Sk then Al/a] b 7[8/q] :: k.

2. If 7 =7/ then 7[8/a] = 7'[8/q].

3. U A ek TEHe:7and AF 7k then Alr'/a]; T /o] & e[t /a] : T[T/ al].
7.3 Progress
As usual, to prove progress, we need a canonical forms lemma.

Lemma (Canonical forms):

1. If v is a closed value with type 7 — 7o, then v is an abstraction.

2. If v is a closed value with type Va::k.7, then v is a type abstraction.

The proof for the first part goes as follows. There are only two kinds of values in plain F,,: abstractions and
type abstractions. Let’s suppose for contradiction that we have a type abstraction with type 73 — 75. Since
type abstractions have types of the shape Va::x.7 (by the typing rules), we need to show:

1 — To = Vauk.T
Which is equivalent to:
T — T =" Vauk.T

By confluence, this means that there exists a 7/ to which these both reduce to. However, by preservation of
shapes under reduction, we have that 7 must be both of the shape 71 — 75 and of the shape Va::x.7, which
is a contradiction. The second part is proved in a similar fashion.

Once we have the canonical forms lemma, the proof for progress is straightforward.

8 Decidability

The last question we can ask is: is typechecking F;, decidable? The answer is yes. Here’s the rough intuition.

First of all, the kinding relation is decidable. It’s easy to believe; our type language is A_,, which we
know is strongly normalizing.”

Second, if we remove the equality rule from the typing relation, it clearly is decidable, since all the
other rules are syntax-directed. If we replace the equality relation with the reduction relation we defined
previously, and only apply it to well-kinded types, everything is still decidable, since well-kinded types are
strongly normalizing.

"That’s a great example of how strongly normalizing languages are useful.



9 F, in the Wild

We've looked at use cases for F,,. Now let’s look at some uses of it in actual programming languages.

9.1 Type Constructors in ML

ML type constructors map pretty much exactly to type operators. Our Triple example would be written in
ML as follows:

type ’a triple = ’a * ’a * ’a
9.2 The ML Module System

The ML module system can be encoded in F,,. Jon will talk about the encoding later in the semester.

9.3 Type Classes in Haskell
Type classes abstract over types. For example,® the Show type class:

class Show a
method show :: a -> string

can be expressed using a type operator:
Show = Aa:: * . {show : (o« — String)}

The record is “evidence” that o can behave as something of class Show. Functions requiring arguments of
class Show, which have a type like:

forall a, b . Show a, Show b => a -> b -> string
can be converted to evidence-passing style:
forall a, b . Show a -> Show b -> a -> b -> string

where the records are passed explicitly, and the function found inside used to turn as and bs to strings.

Type classes can also abstract over arrow kinds. For instance, the Monad type class:

class Monad (M:*->%)
return :: All a:*x.a -> M a
bind :: All a,b:*.Ma -> (a->Mb) >Mb>

abstracts over type operators. Haskellers call these constructor classes.

8Examples from this section are from Greg Morrisett.
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A Full Definition of A, (Sans Operational Semantics)
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B Full Definition of F,, (Sans Operational Semantics)

ex=2x | Azime | ee | Aank.e | e[r] vu= ArTe | Aack.e
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