
FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE

LECTURE & NOTES BY JAMES T. PERCONTI
BASED ON THE TOPLAS 1999 PAPER OF THE SAME NAME BY MORRISETT ET AL.

1. Typed Assembly Language

A traditional assembly language provides only one type of value: the word-sized
bit pattern. All operations apply alike to all strings of bits, whether they are
arithmetic operations, dereferences, control transfers, or anything else.

What if we could use a low-level language that worked in terms of richer ab-
stractions, more in line with those provided by our higher-level languages?

Typed Assembly Language is an assembly language that discriminates things
like

• integers,
• pointers to tuples, and
• code labels.

It keeps these di↵erent kinds of values distinct and only allows the appropriate
operations on each type. Its type system can guarantee that programs will not
break these abstractions (type safety).

Why do we want types in assembly language? Here are some of the benefits of
typechecking assembly programs:

• It’s impossible to manufacture pointers to arbitrary space or jump to un-
verified code.

• Kernel routines are only called with correct number and types of arguments.
• With type-preserving compilation, we maintain many invariants of our orig-
inal high-level language program, such as preventing code from looking
inside the environment of a closure.

We’ll show how to get from System F to TAL using a five-pass compiler. As we
proceed, notice how little the types change.

Here is the overall structure of the compiler:

�F CPS���! �K Closure conversion������������! �C Hoisting�����! �H Allocation������! �A Code generation����������! TAL

We’ll talk about each stage of compilation in detail, but in general, each pass
eliminates some high-level feature from our language, getting us closer to assembly-
style programs.

1

2 JAMES T. PERCONTI

2. System F

To begin, here is a formulation of System F with integers, tuples, and recursion.
There’s only a little that’s new here; have a look at the syntax:

⌧,� ::= ↵ | int | ⌧1 ! ⌧2 | 8↵.⌧ | h⌧1, . . . , ⌧ni types

e ::= u⌧ annotated terms

u ::= x | i | fixx(x1 : ⌧1) : ⌧2.e | e1 e2 | ⇤↵.e | e [⌧] | he1, . . . , eni terms

| ⇡i(e) | e1 p e2 | if0(e1, e2, e3)
p ::= + | � | ⇥ primitives

� ::= ↵1 . . . ,↵n type contexts

� ::= x1 : ⌧1, . . . , xn : ⌧n value contexts

Note that we don’t have a separate �-expression from the recursive fix expression,
but we don’t need it, because we aren’t required to actually make recursive calls in
the body of our functions.

The biggest thing to note is that we annotate each subexpression with its type.
This gives us all the type information we need to ensure that a well-typed System
F program compiles to a well-typed TAL program. Working with annotations
everywhere might seem tedious, but notice that the programmer doesn’t actually
have to write them: they can be inserted by the typechecker. Everything we are
doing happens inside the compiler, after typechecking has finished, so we can simply
carry the annotations around once they are inserted. In this presentation, we will
often leave the annotations implicit just to minimize clutter. The appendix has
complete definitions with all the necessary annotations.

The type system enforces that annotations are used in the natural way: we have
a judgment for annotated terms that just checks that the annotation matches the
type of the underlying term:

�;� `F e : ⌧
�;� `F u : ⌧

�;� `F u⌧ : ⌧

There are two other type judgments in this system: a judgment to check that
types are well formed, and the main typing judgment for unannotated terms.

� `F ⌧ �;� `F u : ⌧

The latter is where all the familiar typing rules live. We don’t need to go over all
of them because we’ve seen them many times by now, but let’s remind ourselves
what the rule for fix looks like:

�;�, x : ⌧1 ! ⌧2, x1 : ⌧1 `F e : ⌧2
�;� `F (fixx(x1 : ⌧1) : ⌧2.e) : ⌧1 ! ⌧2

To typecheck a recursive function, we add the function’s name and argument to
our environment at the appropriate types, and then typecheck the body.

The complete type system for this language and for all the other languages we’ll
talk about are given in the appendix. We won’t give an operational semantics until
we get all the way to TAL, but it should be clear throughout what the implied
semantics are for each language.

OK, enough review of System F; let’s start compiling!

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 3

3. CPS conversion (�K)

Our first pass converts the program to continuation-passing style. This makes
the order of evaluation explicit and gives us a linear program (except when we
have branching paths from if0 expressions). Also, like in assembly language, all
intermediate results are explicitly saved in temporary variables.

We’ve talked some about CPS in class already, but I’ll review the important
parts. First, let’s look at the syntax of �K , the CPS language we’re heading for:

⌧,� ::= ↵ | int | h⌧1, . . . , ⌧ni | 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void types

v, k ::= u⌧ annotated values

u ::= x | i | hv1, . . . , vni | fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e values

p ::= + | � | ⇥ primitives

d ::= x = v | x = ⇡i v | x = v1 p v2 declarations

e ::= let d in e | v[⌧1, . . . , ⌧n](v1, . . . , vm) | if0(v, e1, e2) | halt[⌧]v terms

� ::= ↵1 . . . ,↵n type contexts

� ::= x1 : ⌧1, . . . , xn : ⌧n value contexts

There are several di↵erences between �K and the formulation of System F we
came from. Let’s have a look at them one at a time:

(1) Function abstractions and type abstractions have been merged into one syn-
tactic form. The fix construct now takes both type arguments and value
arguments, and it can take a bunch of arguments at once. This is not really
relevant to CPS itself, but it’s convenient to have this minor feature when
we define the translation.

(2) Values and terms have been split up. We no longer allow any kind of expres-
sion to appear anywhere. Instead, we distinguish between the forms that
do computation (applications, projections, primitive arithmetic operations,
and conditionals) and the forms that are already values. This is how we
get the linearity we’re looking for.

(3) What’s up with that big long type we have now instead of function types
and universal types? I’m glad you asked!

First of all, it’s big and long because of the changes we talked about in point (1).
But the interesting thing here is the ‘! void’ that has replaced the return type of
a function. Why is this here?

In a continuation-passing program, like an imperative assembly program, we
don’t really think of functions as things that return values. Functions just do some
computation, and then hand o↵ control to the continuation they’ve been carrying
around. A continuation is a function that can be thought of as “the rest of the
program.” When we look at the translation from System F to �K in a minute,
we’ll see that every function will be given an extra argument for the continuation
it should hand o↵ to when it’s done.

Of course, we don’t really want our program to never return a value, so we also
add a special form halt[⌧]v that stops the program and gives the final result. But
to match the idea that functions don’t return, we write the type of a function as
taking its arguments and returning void.

Before we move on, let’s look a little more closely at how this language forces
our programs to be linear. Suppose we wanted to compute a simple arithmetic
expression such as (2+3)�(7⇥5). We can’t directly write this down in �K syntax!

4 JAMES T. PERCONTI

Instead, we have to write it something like this:

let x = 2 + 3 in let y = 7⇥ 5 in let z = x� y in halt[int]z.

Typing �K . Let’s talk quickly about the type system for �K , and then get to the
translation itself. We have four judgments in this type system:

� `K ⌧ �;� `K v : ⌧ �;� `K u : ⌧ �;� `K e

These are mostly similar to the three judgments in System F. What’s di↵erent
is that just as we split values from computations in the syntax, we’ve split them
into separate judgments in the type system as well. Since we have this idea that
computation expressions don’t return, we don’t give them types. Instead, that
judgment can be said to check that expressions are well-formed.

Let’s look at one of the rules from this last judgment:

�;� `K v : h⌧1, . . . , ⌧ni �;�, x : ⌧i `K e 1 i n

�;� `K let x = ⇡i v in e

To typecheck a projection expression let x = ⇡i v in e, we just need to make
sure that the value being projected from is a tuple, and check that the body is
well-formed in the environment where x has the type of the appropriate component
of the tuple.

The other typing rules are all straightforward.

Translating System F to �K . Let’s start by looking at how we translate types.
We’ll write the CPS translation of a System F type ⌧ as KtypJ⌧K.

We’ll also use a helper functionKcontJ⌧K, which gives us the type of a continuation
that expects to receive an argument of type KtypJ⌧K. What type is that? Simply a
function type that takes no type arguments, and takes one term argument, as we
just described:

KcontJ⌧K def
= 8[].(KtypJ⌧K)! void

With this helper, the type translation is fairly straightforward. We need to add
an argument to each function (this includes type abstractions) for the continuation
it’s going to call o↵ to when it’s done, but other than that, we just recur structurally:

KtypJ↵K def
= ↵

KtypJintK
def
= int

KtypJ⌧1 ! ⌧2K
def
= 8[].(KtypJ⌧1K,KcontJ⌧2K)! void

KtypJ8↵.⌧K def
= 8[↵].(KcontJ⌧K)! void

KtypJh⌧1, . . . , ⌧niK def
= hKtypJ⌧1K, . . . ,KtypJ⌧nKi

Our translation function for terms, KexpJeKk, takes a continuation as an argu-
ment. To translate a whole program, we need to do some work at the top level to
set up the final continuation, halt[⌧]v.

KprogJu⌧ K def
= KexpJu⌧ K(fixxf [](xv : KtypJ⌧K).halt[KtypJ⌧K]xv)

K
cont

J⌧K

But this is fairly straightforward: we just call the expression translation with an
appropriate k.

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 5

We don’t need to look at every rule of the term translation, but the core idea is
that value forms must call their continuation,

KexpJi⌧ Kk
def
= k[](i)

while computation forms must divide up their work, doing the first piece directly,
and building a continuation to do the rest.

KexpJ⇡i(u
⌧)Kk def

= KexpJu⌧ K(fixxf [](xv : KtypJ⌧K).let y = ⇡i xv in k[](y))

Functions and type abstractions behave just like other value forms, except that we
have to add the extra continuation argument.

KexpJ⇤↵.u⌧ Kk def
= k[](fixxf [↵](xk : KcontJ⌧K).KexpJeKxk)

4. Interlude: Type Preservation; Optimization

None of the passes in our compiler perform any optimization. But of course we
want to enable optimizing compilation. This is not a problem, though, because we
can just add more passes that perform optimization in between translation passes.
For instance, we could write something that takes �K programs to optimized �K

programs and just add it to the pipeline right after CPS conversion.
The thing to worry about when we add passes is that our goal is to preserve

well-typedness as we compile System F programs to TAL. Fortunately, we get this
property by composing a series of lemmas for each translation step: we can prove
that KprogJeK maps well-typed System F programs to well-typed �K programs,
CprogJeK maps well-typed �K programs to well-typed �C programs, and so on.

Further, the type system for each intermediate language is defined for that whole
language, not just for programs that come directly out of the translation from the
previous language. So all we need to do is ensure that additional compilation
passes within our intermediate languages also preserve well-typedness, and then we
maintain our result for the full compilation process.

5. Closure Conversion (�C)

The most obvious high-level feature in our language are closures. Functions in
�K have an implicit environment that gives values to their free variables. We can’t
write down free variables in an assembly program, so they have to go!

We’ll add arguments to each function corresponding to each free variable, and
package the function with an explicit environment object. Let’s try to write down
the type translation for functions:

CtypJ8[↵1, . . . ,↵n](⌧1, . . . , ⌧m)! voidK def
= h8[↵1, . . . ,↵n](⌧1, . . . , ⌧m, ?)! void, ?i

At the type level, we don’t know what the environment should look like, because
we can’t actually check the free variables that appear in the function. But we know
it will have some type, so let’s just say exactly that:

CtypJ8[↵1, . . . ,↵n](⌧1, . . . , ⌧m)! voidK def
= 9�.h8[↵1, . . . ,↵n](⌧1, . . . , ⌧m,�)! void,�i

In fact, using an existential type is quite appropriate here, because we want to
protect the invariants that the closure abstraction gave us. The type we wrote

6 JAMES T. PERCONTI

down enforces that each function is called only with a compatible environment,
and that nothing else can look at the pieces of another function’s environment.

Let’s add existential types and the corresponding terms to our language:

⌧,� ::= · · · | 9↵.⌧ types

u ::= · · · | pack [⌧1, v] as ⌧2 values

d ::= · · · | [↵, x] = unpack v declarations

We now have a solid plan for dealing with term variables (we’ll look at the term
translation in a moment), but what about type variables? We also need to eliminate
free type variables from our functions.

We could try to use the same strategy as with term variables, but this requires a
bunch of machinery (existential kinds! and more) that we don’t want to deal with,
so instead let’s think about the computational content of types.

Once we finish using types for any static checking and for compilation, they
don’t really have any e↵ect on the program. We can erase types at the end of our
compilation process and run the program without them. When we take this view,
type instantiation doesn’t perform computation, so let’s replace our current form
for function application with two new forms that move types out of the world of
computation:

u ::= · · · | v[⌧] values

e ::= · · · | v(v1, . . . , vn) terms

With type application now a value form, we are finished constructing �C , the
target language of our closure conversion translation. Aside from those two sets
of changes, everything is the same as �K . For the most part, the type system is
also similar, with the same four judgments and all the rules you would expect. It
is worth noting, however, that the rule for functions now requires that the function
body typecheck in an environment containing only the variables and type variables
bound by that function:

8i. ↵1, . . . ,↵n `C ⌧i
↵1, . . . ,↵n;x : 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void, x1 : ⌧1, . . . , xn : ⌧n `C e

�;� `C (fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e) : 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void

This matches what our closure-converted language is supposed to do: free variables
have gone away.

We still have to finish defining how to translate �K into �C . The rest of the type
translation just recurs structurally, so there is nothing interesting to do. For the
term translation, the only place where something interesting happens is, of course,
when we translate functions. The full rule is quite complicated, but let’s take at
least a partial look:

CvalJ(fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xn : ⌧n).e)
⌧ K

def
= pack [⌧env, hvcode[�1] · · · [�n], venvi] as CtypJ⌧K

The formal definitions of all these pieces are in the appendix, but informally:

• venv is a tuple containing all the free term variables of the function, and
⌧env is its corresponding type (⌧env is easy to calculate because the variables
still have type annotations on them).

• The �i are the free type variables of the function.

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 7

• vcode transforms the function by replacing each occurrence of a former free
variable with a lookup into the corresponding component of the environ-
ment tuple.

With this translation, we’ve eliminated free variables from our language! What’s
next?

6. Hoisting (�H)

Another feature we need to remove from our language is nested functions. Since
functions no longer have free variables, this is easy! We’re going to pull functions
up to a special top-level form. Let’s begin by adding the new syntax we’ll need.

h ::= code[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e heap values

P ::= letrec x1 7! h1, . . . , xn 7! hn in e programs

We have a new class of values h for the things that live on the heap in assembly
programs. Code blocks are one such thing, and currently the only heap value form
we have. Our “heap” for the moment is the letrec form we’ve added.

To perform the hoisting translation, we just have to find all the fix expressions
in our program, move them to the heap under a fresh variable, and replace their
original position with that variable.

With that done, we can remove the old function form from the syntax, prohibit-
ing �H programs from putting functions anywhere but in the initial heap. And
that’s it!

A quick word about �H ’s type system before we move on: while not much
has changed from �C , we have added new syntactic categories, so we need new
judgments to typecheck them:

`H P � `H h : ⌧ hval

The judgment for programs just calls o↵ to the other judgments to check that all
the heap values and the body are well-typed in an environment containing all the
top-level names. The judgment for heap values contains only a rule for code blocks,
which works like the previous languages’ rule for functions, except that we can
once again use variables bound in the external environment. This doesn’t undo the
restriction we added for �C because now the environment can only ever contain
top-level code labels. (The heap value judgment includes the literal symbol hval
just to make it easier to distinguish which judgment it is.)

7. Explicit Allocation (�A)

In assembly language, we can’t create or manipulate large pieces of data directly;
instead, we keep them on the heap and load in a word-sized piece at a time to work
with. We need to change the way our language handles tuples to match this model.
Syntactically, we replace the previous version of tuples and tuple types with the
following constructs:

⌧,� ::= · · · | h⌧'1

1 , . . . , ⌧'n
n i types

' ::= 1 | 0 initialization flags

v ::= · · · | ?⌧ annotated values

h ::= · · · | hv1, . . . , vni heap values

d ::= · · · | x = malloc[⌧1, . . . , ⌧n] | x = v1[i] v2 declarations

8 JAMES T. PERCONTI

Tuple types are now labeled with a flag that indicates whether each element of
the tuple is initialized (1), or not (0). The tuple value form has been moved to a
heap value form, and we’ve added a few constructs to let us build them:

• The ?⌧ form represents an uninitialized element of a tuple.
• The malloc declaration makes a new tuple of appropriately-typed unini-
tialized values.

• The other new declaration form lets us set the value of a tuple element.

Translating �H to �A is simple: when a tuple appears in our �H program, we just
add the sequence of declarations necessary to build it and replace the occurrence of
the tuple itself with the appropriate variable. At the type level, since tuples that
appeared in our �H program were always fully-initialized, we translate tuple types
by adding the flag for an initialized element to each type in the tuple:

AtypJh⌧1, . . . , ⌧niK = hAtypJ⌧1K1, . . . ,AtypJ⌧nK1i
Finally, let’s note the changes to the type system. Most obviously, the rule for

tuples moves to the judgment for heap values:

8i. ·;� `A vi : ⌧
'i
i

� `A hv1, . . . , vni : h⌧'1

1 , . . . , ⌧'n
n i hval

The judgment used in the premise of this rule is also new: it deals with initialization
flags.

�;� `A v : ⌧'
�;� `A v : ⌧

�;� `A v : ⌧' �;� `A?⌧ : ⌧0
Any of our old value forms can typecheck with either initialization flag, since we
don’t prevent re-initialization of the same tuple element. The ?⌧ form, of course,
may only have the flag for an uninitialized element.

8. Code Generation (TAL)

We’re now very close to having programs that work at an assembly level! Let’s
have a look at the language we want to end up with. Here is the full syntax of TAL:

⌧,� ::= ↵ | int | 8[↵1, . . . ,↵n].� | h⌧'1

1 , . . . , ⌧'n
n i | 9↵.⌧ types

' ::= 1 | 0 initialization flags

 ::= {`1 : ⌧1, . . . , `n : ⌧n} heap types

� ::= {r1 : ⌧1, . . . , rn : ⌧n} register file types

� ::= ↵1 . . . ,↵n type contexts

r ::= r1 | r2 | r3 | · · · registers

w ::= ` | i | ?⌧ | w[⌧] | pack [⌧1, w] as ⌧2 word values

v ::= r | w | v[⌧] | pack [⌧1, v] as ⌧2 small values

h ::= hv1, . . . , vni | code[↵1, . . . ,↵n]�.I heap values

H ::= {`1 7! h1, . . . , `n 7! hn} heaps

R ::= {r1 7! w1, . . . , rn 7! wn} register files

◆ ::= add rd, rs, v | mul rd, rs, v | sub rd, rs, v | bnz r, v instructions

| ld rd, rs[i] | st rd[i].rs | mov rd, v
| malloc rd[⌧1, . . . , ⌧n] | unpack[↵, rd], v

I ::= ◆; I | jmp v | halt[⌧] instruction sequences

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 9

P ::= (H,R, I) programs

Look first at the set of available instructions ◆, and note that all but the last two
are typical instructions we might see in any assembly language. Once we perform
type erasure, the unpack[↵, rd], v instruction is equivalent to mov rd, v, so it should
be easy to accept.

The malloc instruction is a little more complicated, but essentially it can be
implemented as an atomic code sequence that allocates space on the heap equal to
the size of the desired tuple. Our formulation of TAL assumes we have an unlimited
amount of heap space and, for that matter, an unlimited number of registers, which
of course is not the case on a real machine. But for our purposes here, we are not
going to worry about allocation issues.

Next, let’s look at the kinds of values used in TAL. Word values (w) are things
that can fit in a register: pointers, integers, and the “uninitialized tuple element”
value ?⌧ . We also have type applications of and existential packages containing
other word values, but these things don’t take up any space or have any operational
meaning because of type erasure.

“Small” values (v) are the values that can appear in an instruction. They include
all the same things as word values, as well as register names r. When given a register
name as a small value, the semantics of TAL (given on the last page of the appendix)
automatically looks up the underlying word value in that register.

Heap values (h) include code blocks and tuples, just as in �A.

Typing TAL. Overall, our language of types has changed very little from what
we started with in System F. The surrounding type system is also fairly straight-
forward. But there are a few things that should be addressed. First, there have
been two fairly simple syntactic changes:

(1) In assembly language, our �-calculus notion of variables has to shift to
notions of pointers and registers. Thus type environments must become
heap types and register file types �, which map heap pointers and register
names respectively to their types.

(2) Instead of having a list of argument types, the function type now explicitly
states which registers the arguments are expected to be given in, in the form
of the register file type the function expects. (We’ve dropped the “! void”
from the function type as well, but there’s no deep reason for this. It was
just a symbol anyway.)

Since there are a lot of syntactic categories in TAL, there are a lot of judgments
in the type system. But don’t worry! Most of them are very simple. First, we have
the usual judgment for well formed types, and we have judgments that check that
all the types appearing in a register file type or heap type are well-formed:

� `TAL ⌧ `TAL � `TAL �

Note that the heap type judgment doesn’t have any environment: heap values can
only have closed types.

There are two more judgments that deal exclusively with constructs at the type
level:

� `TAL ⌧1 ⌧2 � `TAL �1 �2
These “subtyping” judgments each have one specific purpose, and contain only
exactly the rules needed to carry it out. The first one lets us reset some of the

10 JAMES T. PERCONTI

initialization flags on a tuple type, essentially forgetting that we have initialized
those values. It’s used when we typecheck a pointer. The second one lets us forget
about registers we no longer need when we jump or branch to a code block that
doesn’t expect those registers to have values.

At the term level, we need judgments to typecheck whole program configurations
and each program component:

`TAL P `TAL H : `TAL R : � ;�;� `TAL I

These in turn rely on judgments to typecheck each kind of value:

 `TAL h : ⌧ hval ;� `TAL w : ⌧ wval ;� `TAL w : ⌧'

 ;�;� `TAL v : ⌧

There is not much that is new or interesting in the various value judgments,
and the program, heap, and register file judgments just call out to the others in
the natural way. However, it is worth noting that all program components and
values can reference the heap, so the type of the heap is an environment in all
the corresponding judgments. Similarly, instructions and small values can refer
to registers, so those judgments contain the register file type �. Finally, free type
variables can be found in a word or small value, or in instructions, so an appropriate
environment � is used, but heap values must be closed.

The judgment for an instruction sequence is a bit more interesting, so let’s look at
a couple of example rules. For a typical rule, let’s typecheck an instruction sequence
beginning with an addition instruction. We need to ensure that the inputs rs and
v are integers, and then typecheck the remainder of the instruction sequence in an
environment where the register file type has been extended or updated to map the
destination register rd to the type int.

 ;�;� `TAL rs : int ;�;� `TAL v : int ;�;�{rd : int} `TAL I

 ;�;� `TAL add rd, rs, v; I

Let’s also look at the two instructions that end a sequence: jmp and halt. When
we jump to a code block, the register file type the code block expects must be a
subset of the register file type we currently have. As discussed above, we are allowed
to ignore registers we don’t need anymore thanks to the subtyping judgment on
register file types:

 ;�;� `TAL v : 8[].�0 � `TAL � �0
 ;�;� `TAL jmp v

The final configuration of a program, signified by the halt instruction, expects the
result to be stored in the first register:

 ;�;� `TAL r1 : ⌧

 ;�;� `TAL halt[⌧]

Translating �A to TAL. At the type level, the only thing that happens in the
translation is that function argument types are given explicit register names, as we
already discussed.

Programs letrec x1 7! h1, . . . , xn 7! hn in e are translated to an initial con-
figuration with a heap built from the hi, an empty register file, and an instruction

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 11

sequence given by the translation of e. The translations of program components
are parameterized by a map � that gives heap locations and register names to
correspond to �A’s variables. This initially maps the xi to a fresh set of heap
locations.

The translations for �A’s value forms are not worth detailing any more than this.
The expression translation is more interesting, but involves a lot of bookkeeping,
so we will just give a high-level idea of how each form is compiled. In general,
each expression becomes an appropriate instruction sequence and also a↵ects the
starting heap.

• To translate let x = v in e, we assign a fresh register r to correspond to x
in �, and generate a mov instruction, storing the value from the translation
of v in r. Then we continue the instruction sequence with the translation
of e.

• For the projection let x = ⇡i v in e, we again assign a register x 7!
r, and then we generate a mov instruction to put the pointer resulting
from translating v into r and a ld instruction to put the appropriate tuple
element into r, continuing from there by translating e.

• A primitive operation let x = v1 p v2 in e translates to the corresponding
arithmetic instruction, preceded by a mov to put one of the arguments in
a register, since one input to an arithmetic instruction must come from a
register.

• An unpack expression simply translates to an unpack instruction.
• A malloc expression simply translates to a malloc instruction.
• An update to a tuple is the counterpart to a projection. We do a st after
preparing the arguments with a couple of movs.

• To translate an application v(v1, . . . , vn), since our program is in continuation-
passing style and functions are closed and never return, all we have to do is
prepare the arguments and jump to the appropriate code block. Functions
in TAL always expect their arguments to be in the first n registers, we just
generate a sequence of mov instructions to store the translations of the vi
into the registers ri, and then conclude with a jmp instruction using the
translation of v.

• An if0 expression has to build a new code block on the heap for one of its
bodies, but other than that, we just generate a mov to put the value to test
into a register, and then a bnz.

• Finally, �A’s halt[⌧]v becomes a mov to put the translation of v into r1

and then the instruction halt[⌧].

Material taken from From System F to Typed Assembly Language by Morrisett,
Walker, Crary, and Glew, TOPLAS 1999

12 JAMES T. PERCONTI

9. Appendix: Definitions

9.1. �F .

⌧,� ::= ↵ | int | ⌧1 ! ⌧2 | 8↵.⌧ | h⌧1, . . . , ⌧ni types

e ::= u⌧ annotated terms

u ::= x | i | fixx(x1 : ⌧1) : ⌧2.e | e1 e2 | ⇤↵.e | e [⌧] | he1, . . . , eni terms

| ⇡i(e) | e1 p e2 | if0(e1, e2, e3)
p ::= + | � | ⇥ primitives

� ::= ↵1 . . . ,↵n type contexts

� ::= x1 : ⌧1, . . . , xn : ⌧n value contexts

� `F ⌧
ftv(⌧) ✓ �
� `F ⌧

�;� `F e : ⌧
�;� `F u : ⌧

�;� `F u⌧ : ⌧

�;� `F u : ⌧

�(x) = ⌧

�;� `F x : ⌧ �;� `F i : int

� `F ⌧1 � `F ⌧1 �;�, x : ⌧1 ! ⌧2, x1 : ⌧1 `F e : ⌧2
�;� `F (fixx(x1 : ⌧1) : ⌧2.e) : ⌧1 ! ⌧2

�;� `F e1 : ⌧1 ! ⌧2 �;� `F e2 : ⌧1
�;� `F e1 e2 : ⌧2

�,↵;� `F e : ⌧

�;� `F ⇤↵.e : 8↵.⌧

� `F ⌧ �;� `F e : 8↵.⌧ 0
�;� `F e [⌧] : ⌧ 0[⌧/↵]

8i. �;� `F ei : ⌧i

�;� `F he1, . . . , eni : h⌧1, . . . , ⌧ni

�;� `F e : h⌧1, . . . , ⌧ni 1 i n

�;� `F ⇡i(e) : ⌧i

�;� `F e1 : int �;� `F e2 : int

�;� `F e1 p e2 : int

�;� `F e1 : int �;� `F e2 : ⌧ �;� `F e3 : ⌧

�;� `F if0(e1, e2, e3) : ⌧

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 13

Translation from �F to �K . (variables introduced by the translation must be fresh)

KtypJ↵K def
= ↵

KtypJintK
def
= int

KtypJ⌧1 ! ⌧2K
def
= 8[].(KtypJ⌧1K,KcontJ⌧2K)! void

KtypJ8↵.⌧K def
= 8[↵].(KcontJ⌧K)! void

KtypJh⌧1, . . . , ⌧niK def
= hKtypJ⌧1K, . . . ,KtypJ⌧nKi

KcontJ⌧K def
= 8[].(KtypJ⌧K)! void

KprogJu⌧ K def
= KexpJu⌧ K(fixxf [](x : KtypJ⌧K).halt[KtypJ⌧K]xK

typ

J⌧K)Kcont

J⌧K

KexpJy⌧ Kk
def
= k[](yKtyp

J⌧K)

KexpJi⌧ Kk
def
= k[](iKtyp

J⌧K)

KexpJ(fixx(x1 : ⌧1) : ⌧2.e)
⌧ Kk def

= k[]((fixx[](x1 : KtypJ⌧1K, xk : KcontJ⌧2K).

KexpJeKxK
cont

J⌧
2

K
k)Ktyp

J⌧K)

KexpJ(u⌧
1

1 u⌧
2

2)⌧ Kk def
= KexpJu⌧

1

1 K(fixxf [](x1 : KtypJ⌧1K).
KexpJu⌧

2

2 K(fixxf [](x2 : KtypJ⌧2K).

x
K

typ

J⌧
1

K
1 [](x

K
typ

J⌧
2

K
2 , k))Kcont

J⌧
2

K)Kcont

J⌧
1

K

KexpJ(⇤↵.u⌧)⌧
0
Kk def

= k[]((fix[↵](xk : KcontJ⌧K).

KexpJu⌧ KxK
cont

J⌧K
k)Kcont

J⌧ 0K)

KexpJ(u⌧ [�])⌧
0
Kk def

= KexpJu⌧ K(fixxf [](x : KtypJ⌧K).
xK

typ

J⌧K[KtypJ�K](k))Kcont

J⌧K

KexpJhu⌧
1

1 , . . . , u⌧n
n i⌧ Kk def

= KexpJu⌧
1

1 K(fixxf [](x1 : KtypJ⌧1K). · · ·
KexpJu⌧n

n K(fixxf [](xn : KtypJ⌧nK).

k[](hxK
typ

J⌧
1

K
1 , . . . , xK

typ

J⌧nK
n iKtyp

J⌧K))Kcont

J⌧nK · · ·)Kcont

J⌧
1

K

KexpJ⇡i(u
⌧)⌧

0
Kk def

= KexpJu⌧ K(fixxf [](x : KtypJ⌧K).

let y = ⇡i x in k[](yKtyp

J⌧ 0K))Kcont

J⌧K

KexpJ(u⌧
1

1 p u⌧
2

2)⌧ Kk def
= KexpJu⌧

1

1 K(fixxf [](x1 : KtypJ⌧1K).
KexpJu⌧

2

2 K(fixxf [](x2 : KtypJ⌧2K).
let y = x1 p x2 in k[](yKtyp

J⌧K))Kcont

J⌧
2

K)Kcont

J⌧
1

K

KexpJif0(u⌧
1

1 , e2, e3)
⌧ Kk def

= KexpJu⌧
1

1 K(fixxf [](x : KtypJ⌧1K).
if0(xK

typ

J⌧
1

K,KexpJe2Kk,KexpJe3Kk)Kcont

J⌧K)Kcont

J⌧
1

K

14 JAMES T. PERCONTI

9.2. �K .

⌧,� ::= ↵ | int | h⌧1, . . . , ⌧ni | 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void types

v, k ::= u⌧ annotated values

u ::= x | i | hv1, . . . , vni | fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e values

p ::= + | � | ⇥ primitives

d ::= x = v | x = ⇡i v | x = v1 p v2 declarations

e ::= let d in e | v[⌧1, . . . , ⌧n](v1, . . . , vm) | if0(v, e1, e2) | halt[⌧]v terms

� ::= ↵1 . . . ,↵n type contexts

� ::= x1 : ⌧1, . . . , xn : ⌧n value contexts

� `K ⌧
ftv(⌧) ✓ �
� `K ⌧

�;� `K v : ⌧
�;� `K u : ⌧

�;� `K u⌧ : ⌧

�;� `K u : ⌧

�(x) = ⌧

�;� `K x : ⌧ �;� `K i : int

8i. �;� `K vi : ⌧i
�;� `K hv1, . . . , vni : h⌧1, . . . , ⌧ni

8i. �,↵1, . . . ,↵n `K ⌧i
(�,↵1, . . . ,↵n); (�, x : 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void, x1 : ⌧1, . . . , xn : ⌧n) `K e

�;� `K (fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e) : 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void

�;� `K e

�;� `K v : ⌧ �;�, x : ⌧ `K e

�;� `K let x = v in e

�;� `K v : h⌧1, . . . , ⌧ni �;�, x : ⌧i `K e 1 i n

�;� `K let x = ⇡i v in e

�;� `K v1 : int �;� `K v2 : int �;�, x : int `K e

�;� `K let x = v1 p v2 in e

8i. � `K �i 8i. �;� `K vi : ⌧i[�1/↵1] · · · [�n/↵n]
�;� `K v : 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void

�;� `K v[�1, . . . ,�n](v1, . . . , vm)

�;� `K e1 : int �;� `K e2 �;� `K e3

�;� `K if0(v, e2, e3)

�;� `K v : ⌧

�;� `K halt[⌧]v

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 15

Translation from �K to �C . (variables introduced by the translation must be fresh)

CtypJ↵K def
= ↵

CtypJintK def
= int

CtypJ8[↵1, . . . ,↵n](⌧1, . . . , ⌧n)! voidK def
= 9�.h8[↵1, . . . ,↵n](�, CtypJ⌧1K, . . . , CtypJ⌧nK)! void,�i

CtypJh⌧1, . . . , ⌧niK def
= hCtypJ⌧1K, . . . , CtypJ⌧nKi

CprogJeK def
= CexpJeK

CexpJlet d in eK def
= let CdecJdK in CexpJeK

CexpJu⌧ [�1, . . . ,�n](v1, . . . , vm)K def
= let [↵, x] = unpack CvalJu⌧ K in

let xcode = ⇡1 xh⌧
code

,↵i
in

let xenv = ⇡2 xh⌧
env

,↵i
in

xcode
⌧
code [CtypJ�1K] · · · [CtypJ�nK]

(x↵
env, CvalJv1K, . . . , CvalJvnK)

where CvalJ⌧K = 9↵.h⌧code,↵i
CexpJif0(v, e1, e2)K def

= if0(CvalJvK, CexpJe1K, CexpJe2K)
CexpJhalt[⌧]vK def

= halt[CtypJ⌧K]CvalJvK

CdecJx = vK def
= x = CvalJvK

CdecJx = ⇡i vK
def
= x = ⇡i CvalJvK

CdecJx = v1 p v2K
def
= x = CvalJv1K p CvalJv2K

CvalJx⌧ K def
= xC

typ

J⌧K

CvalJi⌧ K def
= iCtyp

J⌧K

CvalJhv1, . . . , vni⌧ K def
= hCvalJv1K, . . . , CvalJvnKiCtyp

J⌧K

CvalJ(fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e)⌧ K def
= (pack [⌧env, h(vcode[�1] · · · [�n])

⌧
code , venvih⌧code,⌧envi]

as CtypJ⌧K)Ctyp

J⌧K

where y�1

1 , . . . , y�i
i = fv(fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e)

�1, . . . ,�j = ftv(fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e)

⌧env = CtypJh�1, . . . ,�iiK
⌧rawcode = 8[�1, . . . ,�j ,↵1, . . . ,↵n].(⌧env, CtypJ⌧1K, . . . , CtypJ⌧mK)! void

⌧code = 8[↵1, . . . ,↵n].(⌧env, CtypJ⌧1K, . . . , CtypJ⌧mK)! void

venv = hyCtyp

J�
1

K
1 , . . . , y

C
typ

J�iK
i i⌧env

vcode = (fixxcode[�1, . . . ,�j ,↵1, . . . ,↵n](xenv : ⌧env, x1 : CtypJ⌧1K, . . . , xm : CtypJ⌧mK).
let x = (pack [⌧env, hxcode

⌧
rawcode [�1] · · · [�j]

⌧
code , x⌧

env

env ih⌧code,⌧envi] as CtypJ⌧K)Ctyp

J⌧K
in

let y1 = ⇡1 xenv
⌧
env

in · · · let yi = ⇡i xenv
⌧
env

in CexpJeK)⌧rawcode

16 JAMES T. PERCONTI

9.3. �C . (di↵erences from �K are highlighted)

⌧,� ::= ↵ | int | h⌧1, . . . , ⌧ni | 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void | 9↵.⌧ types

v ::= u⌧ annotated values

u ::= x | i | hv1, . . . , vni | fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e | v[⌧] values

| pack [⌧1, v] as ⌧2
p ::= + | � | ⇥ primitives

d ::= x = v | x = ⇡i v | x = v1 p v2 | [↵, x] = unpack v declarations

e ::= let d in e | v(v1, . . . , vm) | if0(v, e1, e2) | halt[⌧]v terms

� ::= ↵1 . . . ,↵n type contexts

� ::= x1 : ⌧1, . . . , xn : ⌧n value contexts

� `C ⌧
ftv(⌧) ✓ �
� `C ⌧

�;� `C v : ⌧
�;� `C u : ⌧

�;� `C u⌧ : ⌧

�;� `C u : ⌧

�(x) = ⌧

�;� `C x : ⌧ �;� `C i : int

8i. �;� `C vi : ⌧i
�;� `C hv1, . . . , vni : h⌧1, . . . , ⌧ni

8i. ↵1, . . . ,↵n `C ⌧i
↵1, . . . ,↵n;x : 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void, x1 : ⌧1, . . . , xn : ⌧n `C e

�;� `C (fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e) : 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void

� `C � �;� `C v : 8[↵,�1, . . . ,�n].(⌧1, . . . , ⌧n)! void

�;� `C v[�] : 8[�1, . . . ,�n].(⌧1[�/↵], . . . , ⌧n[�/↵])! void

� `C ⌧1 �;� `C v : ⌧2[⌧1/↵]

�;� `C pack [⌧1, v] as 9↵.⌧2 : 9↵.⌧2
�;� `C e

�;� `C v : ⌧ �;�, x : ⌧ `C e

�;� `C let x = v in e

�;� `C v : h⌧1, . . . , ⌧ni
�;�, x : ⌧i `C e 1 i n

�;� `C let x = ⇡i v in e

�;� `C v1 : int �;� `C v2 : int �;�, x : int `C e

�;� `C let x = v1 p v2 in e

8i. �;� `C vi : ⌧i �;� `C v : 8[].(⌧1, . . . , ⌧m)! void

�;� `C v(v1, . . . , vm)

�;� `C e1 : int �;� `C e2 �;� `C e3

�;� `C if0(v, e2, e3)

�;� `C v : ⌧

�;� `C halt[⌧]v

�;� `C v : 9↵.⌧ �,↵;�, x : ⌧ `C e

�;� `C let [↵, x] = unpack v in e

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 17

Translation from �C to �H . (variables introduced by the translation must be fresh)
We use the following shorthand for heaps:

H ::= x1 7! h1, . . . , xn 7! hn

HtypJ⌧K def
= ⌧

HprogJeK
def
= letrec H in e0 where (e0, H) = HexpJeK

HexpJlet d in eK def
= (let d0 in e0, H,H 0)

where (d0, H) = HdecJdK and (e0, H 0) = HexpJeK

HexpJv(v1, . . . , vn)K
def
= (v0(v01, . . . , v

0
n), H,H1, . . . , Hn)

where (v0, H) = HvalJvK and (v01, H1) = HvalJv1K, . . . , (v0n, Hn) = HvalJvnK

HexpJif0(v, e1, e2)K
def
= (if0(v0, e01, e

0
2), H,H1, H2)

where (v0, H) = HvalJvK, (e01, H1) = HexpJe1K, and (e02, H2) = HexpJe2K

HexpJhalt[⌧]vK
def
= (halt[⌧]v0, H) where (v0, H) = HvalJvK

HdecJx = vK def
= (x = v0, H) where (v0, H) = HvalJvK

HdecJx = ⇡i vK
def
= (x = ⇡i v

0, H) where (v0, H) = HvalJvK

HdecJx = v1 p v2K
def
= (x = v01 p v02, H1, H2)

where (v01, H1) = HvalJv1K and (v02, H2) = HvalJv2K

HdecJ[↵, x] = unpack vK def
= ([↵, x] = unpack v0, H) where (v0, H) = HvalJvK

HvalJx⌧ K def
= (x⌧ , ·)

HvalJi⌧ K
def
= (i⌧ , ·)

HvalJhv1, . . . , vni⌧ K def
= (hv01, . . . , v0ni⌧ , H1, . . . , Hn)

where (v01, H1) = HvalJv1K, . . . , (v0n, Hn) = HvalJvnK

HvalJv[�]⌧ K
def
= (v0[�]⌧ , H) where (v0, H) = HvalJvK

HvalJ(pack [⌧1, v] as ⌧2)⌧ K
def
= (pack [⌧1, v

0] as ⌧2)
⌧ , H) where (v0, H) = HvalJvK

HvalJ(fixx[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e)⌧ K def
= (xclos

⌧ , H, xclos 7! h)

where (e0, H) = HexpJe[xclos/x]K and h = code[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e0}

18 JAMES T. PERCONTI

9.4. �H . (di↵erences from �C are highlighted)

⌧,� ::= ↵ | int | h⌧1, . . . , ⌧ni | 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void | 9↵.⌧ types

v ::= u⌧ annotated values

u ::= x | i | hv1, . . . , vni | v[⌧] | pack [⌧1, v] as ⌧2 values

h ::= code[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e heap values

p ::= + | � | ⇥ primitives

d ::= x = v | x = ⇡iv | x = v1 p v2 | [↵, x] = unpack v declarations

e ::= let d in e | v(v1, . . . , vm) | if0(v, e1, e2) | halt[⌧]v terms

P ::= letrec x1 7! h1, . . . , xn 7! hn in e programs

� ::= ↵1 . . . ,↵n type contexts

� ::= x1 : ⌧1, . . . , xn : ⌧n value contexts

� `H ⌧
ftv(⌧) ✓ �
� `H ⌧

�;� `H v : ⌧
�;� `H u : ⌧

�;� `H u⌧ : ⌧

�;� `H u : ⌧

�(x) = ⌧

�;� `H x : ⌧ �;� `H i : int

8i. �;� `H vi : ⌧i
�;� `H hv1, . . . , vni : h⌧1, . . . , ⌧ni

� `H � �;� `H v : 8[↵,�1, . . . ,�n].(⌧1, . . . , ⌧n)! void

�;� `H v[�] : 8[�1, . . . ,�n].(⌧1[�/↵], . . . , ⌧n[�/↵])! void

� `H ⌧1 �;� `H v : ⌧2[⌧1/↵]

�;� `H pack [⌧1, v] as 9↵.⌧2 : 9↵.⌧2
� `H h : ⌧ hval

8i. ↵1, . . . ,↵n `H ⌧i ↵1, . . . ,↵n;�, x1 : ⌧1, . . . , xn : ⌧n `H e

� `H code[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e : 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void hval

�;� `H e

�;� `H v : ⌧ �;�, x : ⌧ `H e

�;� `H let x = v in e

�;� `H v : h⌧1, . . . , ⌧ni
�;�, x : ⌧i `H e 1 i n

�;� `H let x = ⇡i v in e

�;� `H v1 : int
�;� `H v2 : int �;�, x : int `H e

�;� `H let x = v1 p v2 in e

8i. �;� `H vi : ⌧i
�;� `H v : 8[].(⌧1, . . . , ⌧m)! void

�;� `H v(v1, . . . , vm)

�;� `H e1 : int �;� `H e2 �;� `H e3

�;� `H if0(v, e2, e3)

�;� `H v : ⌧

�;� `H halt[⌧]v

�;� `H v : 9↵.⌧ �,↵;�, x : ⌧ `H e

�;� `H let [↵, x] = unpack v in e

`H P

8i. · `H ⌧i 8i. x1 : ⌧1, . . . , xn : ⌧n `H hi : ⌧i hval
·;x1 : ⌧1, . . . , xn : ⌧n `H e xi 6= xj for i 6= j

`H letrec x1 7! h1, . . . , xn 7! hn in e

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 19

Translation from �H to �A. (variables introduced by the translation must be fresh)
We use the following abbreviations for sequences of declarations:

D ::= d1, . . . , dn let d1, . . . , dn in e
def
= let d1 in · · · let dn in e

AtypJ↵K def
= ↵

AtypJintK
def
= int

AtypJ8[↵1, . . . ,↵n](⌧1, . . . , ⌧m)! voidK def
= 8[↵1, . . . ,↵n](AtypJ⌧1K, . . . ,AtypJ⌧mK)! void

AtypJh⌧1, . . . , ⌧niK def
= hAtypJ⌧1K1, . . . ,AtypJ⌧nK1i

AtypJ9↵.⌧K def
= 9↵.AtypJ⌧K

AprogJletrec x1 7! h1, . . . , xn 7! hn in eK
def
= letrec x1 7! AhvalJh1K, . . . , xn 7! AhvalJhnK in AexpJeK

AhvalJcode[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).eK
def
= code[↵1, . . . ,↵n](x1 : AtypJ⌧1K, . . . , xm : AtypJ⌧mK).AexpJeK

AexpJlet d in eK def
= let AdecJdK in AexpJeK

AexpJv(v1, . . . , vn)K
def
= let D,D1, . . . Dn in v0(v01, . . . , v

0
n)

where (v0, D) = AvalJvK and (v01, Dn) = AvalJv1K, . . . , (v0n, Dn) = AvalJvnK

AexpJif0(v, e1, e2)K
def
= let D in if0(v0,AexpJe1K,AexpJe2K) where (v0, D) = AvalJvK

AexpJhalt[⌧]vK
def
= let D in halt[AtypJ⌧K]v0 where (v0, D) = AvalJvK

AdecJx = vK def
= D,x = v0 where (v0, D) = AvalJvK

AdecJx = ⇡i vK
def
= D,x = ⇡i v

0 where (v0, D) = AvalJvK

AdecJx = v1 p v2K
def
= D1, D2, x = v01 p v02 where (v0i, Di) = AvalJviK

AdecJ[↵, x] = unpack vK def
= D, [↵, x] = unpack v0 where (v0, D) = AvalJvK

AvalJx⌧ K def
= (x⌧ , ·)

AvalJi⌧ K
def
= (i⌧ , ·)

AvalJv[�]⌧ K
def
= (v0[AtypJ�K]Atyp

J⌧K, D) where (v0, D) = AvalJvK

AvalJ(pack [�, v] as ⌧ 0)⌧ K
def
= ((pack [AtypJ�K, v0] asAtypJ⌧ 0K)Atyp

J⌧K, D) where (v0, D) = AvalJvK

AvalJhu⌧
1

1 , . . . , u⌧n
n i⌧ K def

= (yAtyp

J⌧K
n , D1, . . . , Dn, y0 = malloc[AtypJ⌧1K, . . . ,AtypJ⌧nK],

y1 = y�0

0 [1] v01, . . . , yn = yn�1
�n�1 [n] v0n)

where (v0i, Di) = AvalJu⌧i
i K and �i = hAtypJ⌧1K1, . . . ,AtypJ⌧iK1,AtypJ⌧i+1K0, . . . ,AtypJ⌧nK0i

20 JAMES T. PERCONTI

9.5. �A. (di↵erences from �H are highlighted)

⌧,� ::= ↵ | int | h⌧'1

1 , . . . , ⌧'n
n i | 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void | 9↵.⌧ types

' ::= 1 | 0 initialization flags

v ::= u⌧ | ?⌧ annotated values

u ::= x | i | v[⌧] | pack [⌧1, v] as ⌧2 values

h ::= code[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e | hv1, . . . , vni heap values

p ::= + | � | ⇥ primitives

d ::= x = v | x = ⇡i v | x = v1 p v2 | [↵, x] = unpack v declarations

| x = malloc[⌧1, . . . , ⌧n] | x = v1[i] v2
e ::= let d in e | v(v1, . . . , vm) | if0(v, e1, e2) | halt[⌧]v terms

P ::= letrec x1 7! h1, . . . , xn 7! hn in e programs

� ::= ↵1 . . . ,↵n type contexts

� ::= x1 : ⌧1, . . . , xn : ⌧n value contexts

� `A ⌧
ftv(⌧) ✓ �
� `A ⌧

�;� `A v : ⌧
�;� `A u : ⌧

�;� `A u⌧ : ⌧

�;� `A u : ⌧

�(x) = ⌧

�;� `A x : ⌧ �;� `A i : int

� `A ⌧1 �;� `A v : ⌧2[⌧1/↵]

�;� `A pack [⌧1, v] as 9↵.⌧2 : 9↵.⌧2

� `A � �;� `A v : 8[↵,�1, . . . ,�n].(⌧1, . . . , ⌧n)! void

�;� `A v[�] : 8[�1, . . . ,�n].(⌧1[�/↵], . . . , ⌧n[�/↵])! void

�;� `A v : ⌧'

�;� `A v : ⌧

�;� `A v : ⌧' �;� `A?⌧ : ⌧0

� `A h : ⌧ hval

8i. ↵1, . . . ,↵n `A ⌧i ↵1, . . . ,↵n;�, x1 : ⌧1, . . . , xn : ⌧n `A e

� `A code[↵1, . . . ,↵n](x1 : ⌧1, . . . , xm : ⌧m).e : 8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! void hval

8i. ·;� `A vi : ⌧
'i
i

� `A hv1, . . . , vni : h⌧'1

1 , . . . , ⌧'n
n i hval

`A P

8i. · `A ⌧i 8i. x1 : ⌧1, . . . , xn : ⌧n `A hi : ⌧i hval
·;x1 : ⌧1, . . . , xn : ⌧n `A e xi 6= xj for i 6= j

`A letrec x1 7! h1, . . . , xn 7! hn in e

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 21

�;� `A e

�;� `A v : ⌧ �;�, x : ⌧ `A e

�;� `A let x = v in e

�;� `A v : h⌧'1

1 , . . . , ⌧'1

n i �;�, x : ⌧i `A e 1 i n 'i = 1

�;� `A let x = ⇡i v in e

�;� `A v1 : int �;� `A v2 : int �;�, x : int `A e

�;� `A let x = v1 p v2 in e

8i. �;� `A vi : ⌧i �;� `A v : 8[].(⌧1, . . . , ⌧m)! void

�;� `A v(v1, . . . , vm)

�;� `A e1 : int �;� `A e2 �;� `A e3

�;� `A if0(v, e2, e3)

�;� `A v : ⌧

�;� `A halt[⌧]v

�;� `A v : 9↵.⌧ �,↵;�, x : ⌧ `A e

�;� `A let [↵, x] = unpack v in e

8i. � `A ⌧i �;�, x : h⌧01 , . . . , ⌧0ni `A e

�;� `A let x = malloc[⌧1, . . . , ⌧n] in e

�;� `A v1 : h⌧'1

1 , . . . , ⌧'n
n i �;� `A v2 : ⌧i

�;�, x : h⌧'1

1 , . . . , ⌧1i , . . . , ⌧
'n
n i `A e 1 i n

�;� `A let x = v1[i] v2 in e

22 JAMES T. PERCONTI

Translation from �A to TAL.
We make use of mappings � from �A variables to TAL registers and addresses:

� ::= {x1 7! v1, . . . , xn 7! vn}

TtypJ↵K def
= ↵

TtypJintK def
= int

TtypJ8[↵1, . . . ,↵n].(⌧1, . . . , ⌧m)! voidK def
= 8[↵1, . . . ,↵n].(r1 : TtypJ⌧1K, . . . , rn : TtypJ⌧mK)

TtypJh⌧'1

1 , . . . , ⌧'n
n iK def

= hTtypJ⌧1K'1 , . . . , TtypJ⌧nK'ni
TtypJ9↵.⌧K def

= 9↵.TtypJ⌧K

TprogJletrec x1 7! h1, . . . , xn 7! hn in eK def
= (H, {}, I)

where � = {x1 7! `1, . . . , xn 7! `n}
(h0

i, Hi) = ThvalJhiK�
(I,Hexp) = TexpJeK�; ·; ·
Hroot = {`1 7! h0

1, . . . , `n 7! h0
n}

H = HrootH1 · · ·HnHexp

`i distinct

ThvalJcode[↵1, . . . ,↵n](x1 : ⌧1, . . . xn : ⌧n).eK�
def
= (code[↵1, . . . ,↵n]�.I,H)

where � = {r1 : TtypJ⌧1K, . . . , rn : TtypJ⌧nK}
�0 = �{x1 7! r1, . . . , xn 7! rn}
(I,H) = TexpJeK�0;↵1, . . . ,↵n;�

ThvalJhv1, . . . , vniK� def
= (hTvalJv1K�, . . . , TvalJvnK�i, {})

TvalJx⌧ K� def
= �(x)

TvalJi⌧ K� def
= i

TvalJv[�]⌧ K� def
= (TvalJvK�)[TtypJ�K]

TvalJ(pack [�, v] as ⌧ 0)⌧ K def
= pack [TtypJ�K, TvalJvK�] as TtypJ⌧ 0K

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 23

TexpJlet x = u⌧
in eK�;�;�

def
= ((mov r, TvalJu⌧ K�; I), H)

where (I,H) = TexpJeK�{x 7! r};�;�{r : TtypJ⌧K} and r is fresh

TexpJlet x = ⇡i u
h⌧'

1

1

,...,⌧'n
n i

in eK�;�;�
def
= ((mov r, TvalJuh⌧'

1

1

,...,⌧'n
n iK�; ld r, r[i� 1]; I), H)

where (I,H) = TexpJeK�{x 7! r};�;�{r : TtypJ⌧iK} and r is fresh

TexpJlet x = v1 p v2 in eK�;�;�
def
= ((mov r, TvalJv1K�; op(p) r, r, TvalJv2K�; I), H)

where (I,H) = TexpJeK�{x 7! r};�;�{r : int},
op(+) = add, op(�) = sub, op(⇥) = mul

and r is fresh

TexpJlet [↵, x] = unpacku9↵.⌧
in eK�;�;�

def
= ((unpack[↵, r], TvalJu9↵.⌧ K�; I), H)

where (I,H) = TexpJeK�{x 7! r};�{↵};�{r : TtypJ⌧K} and r is fresh

TexpJlet malloc[⌧1, . . . , ⌧n] in eK�;�;�
def
= ((malloc r[TtypJ⌧1K, . . . , TtypJ⌧1K]; I), H)

where (I,H) = TexpJeK�{x 7! r};�;�{r : hTtypJ⌧1K0, . . . , TtypJ⌧1K0i} and r is fresh

TexpJlet x = uh⌧'
1

1

,...,⌧'n
n i[i] v in eK�;�;�

def
= ((mov r, TvalJuh⌧'

1

1

,...,⌧'n
n iK�;

mov r0, TvalJvK�;
st r[i� 1], r0; I), H)

where (I,H) = TexpJeK�{x 7! r};�;�{r : TtypJh⌧'1

1 , . . . , ⌧
'i�1

i�1 , ⌧1i , ⌧
'i+1

i+1 , . . . ⌧'n
n iK}

and r, r0 are fresh

TexpJv(v1, . . . , vn)K�;�;�
def
= ((mov r00, TvalJvK�;

mov r01, TvalJv1K�; . . . ; mov r0n, TvalJvnK�;
mov r1, r01; . . . ; mov rn, r

0
n; I), {})

where the r0i are fresh and disjoint from {r1, . . . , rn}.

TexpJif0(v, e1, e2)K�;�;�
def
= ((mov r, TvalJvK�; bnz r, `[�]; I1), H1H2{` 7! h})

where (I1, H1) = TexpJe1K�;�;�

(I2, H2) = TexpJe2K�;�;�

h = code[�]�.I2
and `, r are fresh

TexpJhalt[⌧]vK�;�;�
def
= ((mov r1, TvalJvK�;halt[TtypJ⌧K]), {})

24 JAMES T. PERCONTI

9.6. TAL.

⌧,� ::= ↵ | int | 8[↵1, . . . ,↵n].� | h⌧'1

1 , . . . , ⌧'n
n i | 9↵.⌧ types

' ::= 1 | 0 initialization flags

 ::= {`1 : ⌧1, . . . , `n : ⌧n} heap types

� ::= {r1 : ⌧1, . . . , rn : ⌧n} register file types

� ::= ↵1 . . . ,↵n type contexts

r ::= r1 | r2 | r3 | · · · registers

w ::= ` | i | ?⌧ | w[⌧] | pack [⌧1, w] as ⌧2 word values

v ::= r | w | v[⌧] | pack [⌧1, v] as ⌧2 small values

h ::= hv1, . . . , vni | code[↵1, . . . ,↵n]�.I heap values

H ::= {`1 7! h1, . . . , `n 7! hn} heaps

R ::= {r1 7! w1, . . . , rn 7! wn} register files

◆ ::= add rd, rs, v | mul rd, rs, v | sub rd, rs, v | bnz r, v instructions

| ld rd, rs[i] | st rd[i].rs | mov rd, v
| malloc rd[⌧1, . . . , ⌧n] | unpack[↵, rd], v

I ::= ◆; I | jmp v | halt[⌧] instruction sequences

P ::= (H,R, I) programs

� `TAL ⌧
ftv(⌧) ✓ �
� `TAL ⌧

`TAL
8i. · `TAL ⌧i

`TAL {`1 : ⌧1, . . . , `n : ⌧n}

� `TAL �
8i. � `TAL ⌧i

� `TAL {r1 : ⌧1, . . . , rn : ⌧n}

� `TAL ⌧1 ⌧2

� `TAL ⌧

� `TAL ⌧ ⌧

� `TAL ⌧1 ⌧2 � `TAL ⌧2 ⌧3

� `TAL ⌧1 ⌧3

8i. � `TAL ⌧i

� `TAL h⌧'1

1 , . . . , ⌧
'i�i

i�1 , ⌧1i , ⌧
'i+i

i+1 , . . . , ⌧'n
n i h⌧'1

1 , . . . , ⌧
'i�i

i�1 , ⌧0i , ⌧
'i+i

i+1 , . . . , ⌧'n
n i

� `TAL �1 �2
8i m. � `TAL ⌧i m � n

� `TAL {r1 : ⌧1, . . . , rn : ⌧m} {r1 : ⌧1, . . . , rn : ⌧n}

`TAL P
`TAL H : `TAL R : � ; ·;� `TAL I

`TAL (H,R, I)

`TAL H :
 = {`1 : ⌧1, . . . , `n : ⌧n} `TAL 8i. `TAL hi : ⌧i hval

`TAL {`1 7! h1, . . . , `n 7! hn} :

 `TAL R : �
8i m. ; · `TAL wi : ⌧i wval m � n

 `TAL {r1 7! w1, . . . , rm 7! wm} : {r1 : ⌧1, . . . , rn : ⌧n}

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 25

 `TAL h : ⌧ hval

8i. ; · `TAL wi : ⌧
'i
i

 `TAL hw1, . . . , wni : h⌧'1

1 , . . . , ⌧'n
n i hval

↵1, . . . ,↵n `TAL � ;↵1, . . . ,↵n;� `TAL I

 `TAL code[↵1, . . . ,↵n]�.I : 8[↵1, . . . ,↵n].� hval

 ;� `TAL w : ⌧ wval

 (`) = ⌧ 0 � `TAL ⌧ 0 ⌧

 ;� `TAL ` : ⌧ wval ;� `TAL i : int wval

� `TAL ⌧ ;� `TAL w : 8[↵,�1, . . . ,�n].� wval

 ;� `TAL w[⌧] : 8[�1, . . . ,�n].�[⌧/↵] wval

� `TAL ⌧ ;� `TAL w : ⌧ 0[⌧/↵] wval

 ;� `TAL pack [⌧, w] as 9↵.⌧ 0 : 9↵.⌧ 0 wval
 ;� `TAL w : ⌧'

 ;� `TAL w : ⌧ wval

 ;� `TAL w : ⌧'
� `TAL ⌧

 ;� `TAL ?⌧ : ⌧0

 ;�;� `TAL v : ⌧

�(r) = ⌧

 ;�;� `TAL r : ⌧

 ;� `TAL w : ⌧ wval

 ;�;� `TAL w : ⌧

� `TAL ⌧ ;�;� `TAL v : 8[↵,�1, . . . ,�n].�
0

 ;�;� `TAL v[⌧] : 8[�1, . . . ,�n].�
0[⌧/↵]

� `TAL ⌧ ;�;� `TAL v : ⌧ 0[⌧/↵]

 ;�;� `TAL pack [⌧, v] as 9↵.⌧ 0 : 9↵.⌧ 0

26 JAMES T. PERCONTI

 ;�;� `TAL I

 ;�;� `TAL rs : int
 ;�;� `TAL v : int ;�;�{rd : int} `TAL I arith 2 {add, mul, sub}

 ;�;� `TAL arith rd, rs, v; I

 ;�;� `TAL r : int
 ;�;� `TAL v : 8[].�0 � `TAL � �0 ;�;� `TAL I

 ;�;� `TAL bnz r, v; I

 ;�;� `TAL rs : h⌧'0

0 , . . . , ⌧
'n�1

n�1 i
 ;�;�{rd : ⌧i} `TAL I 'i = 1 0 i n

 ;�;� `TAL ld rd, rs[i]; I

� `TAL ⌧i ;�;�{rd : h⌧01 , . . . , ⌧0ni} `TAL I

 ;�;� `TAL malloc rd[⌧1, . . . , ⌧n]; I

 ;�;� `TAL v : ⌧ ;�;�{rd : ⌧} `TAL I

 ;�;� `TAL mov rd, v; I

 ;�;� `TAL rd : h⌧'0

0 , . . . , ⌧
'n�1

n�1 i
 ;�;`TAL rs : ⌧i ;�;�{rd : h⌧'0

0 , . . . , ⌧1i , . . . , ⌧
'n�1

n�1 i} `TAL I

 ;�;� `TAL st rd[i], rs; I

 ;�;� `TAL v : 9↵.⌧ ;�,↵;�{rd : ⌧} `TAL I

 ;�;� `TAL unpack[↵, rd], v; I

 ;�;� `TAL v : 8[].�0 � `TAL � �0
 ;�;� `TAL jmp v

 ;�;� `TAL r1 : ⌧

 ;�;� `TAL halt[⌧]

FROM SYSTEM F TO TYPED ASSEMBLY LANGUAGE 27

Operational Semantics. P 7�! P

(H,R, add rd, rs, v; I) 7�! (H,R{rd 7! (R(rs) + R̂(v))}, I)
(H,R, mul rd, rs, v; I) 7�! (H,R{rd 7! (R(rs)⇥ R̂(v))}, I)
(H,R, sub rd, rs, v; I) 7�! (H,R{rd 7! (R(rs)� R̂(v))}, I)

(H,R, bnz r, v; I) 7�! (H,R, I)

when R(r) = 0

(H,R, bnz r, v; I) 7�! (H,R, I 0[⌧1/↵1] · · · [⌧n/↵n])

where R̂(V) = `[⌧1, . . . , ⌧n]

and H(`) = code[↵1, . . . ,↵n]�.I
0

when R(r) = i and i 6= 0

(H,R, jmp v) 7�! (H,R, I 0[⌧1/↵1] · · · [⌧n/↵n])

where R̂(V) = `[⌧1, . . . , ⌧n]

and H(`) = code[↵1, . . . ,↵n]�.I
0

(H,R, ld rd, rs[i]; I) 7�! (H,R{rd 7! wi}, I)
where R(rs) = ` and H(`) = hw0, . . . , wn�1i
with 0 i < n

(H,R, st rd[i], rs; I) 7�! (H{` 7! hw0, . . . , wi�1, R(rs), wi+1, wn�1i}, R, I)

where R(rd) = ` and H(`) = hw0, . . . , wn�1i
with 0 i < n

(H,R, mov rd, v; I) 7�! (H,R{rd 7! R̂(v)}, I)

(H,R, malloc rd[⌧1, . . . , ⌧n]; I) 7�! (H{` 7! h?⌧1, . . . , ?⌧ni}, R{rd 7! `}, I)
where ` 62 H

(H,R, unpack[↵, rd], v; I) 7�! (H,R{rd 7! w}, I[⌧/↵])
where R̂(v) = pack [⌧, w] as ⌧ 0

Where

R̂(v) =

8
>>><

>>>:

R(w) when v = r

w when v = w

R̂(v0)[⌧] when v = v0[⌧]

pack [⌧, R̂(v0)] as ⌧ 0 when v = pack [⌧, v0] as ⌧ 0

