
CS7480 Homework 2 Due: 11am, 8 Oct 2015

You may turn in handwritten solutions to this assignment—but make sure you write clearly and leave
lots of whitespace. If you choose to typeset your solutions, the LaTeX sources are available for your use at
the course website. (Look in hw2.tex for macros you can use.) A pdf file containing the solutions can be
submitted via email.

This homework is worth 100 points.

Parametricity

Recall from class the following logical relation for System F (where we assume a call-by-value operational
semantics for System F).

Notation Below, the metavariable R ranges over relations on closed values (i.e., values with no free type
or term variables). The metavariable ρ ranges over finite maps from type variables α to triples (τ1, τ2, R),
where τ1 and τ2 are closed types and R is a value relation. Finally, the metavariable γ ranges over finite
maps from term variables x to pairs of closed values.

If ρ = {α1 7→ (τ11, τ12, R1), . . . , αn 7→ (τn1, τn2, Rn)} and γ = {x1 7→ (v11, v12), . . . , xm 7→ (vm1, vm2)},
then

• ρ1(τ) denotes τ [τ11/α1, . . . , τn1/αn] and ρ2(τ) denotes τ [τ12/α1, . . . , τn2/αn]

• ρ1(e) denotes e[τ11/α1, . . . , τn1/αn] and ρ2(e) denotes e[τ12/α1, . . . , τn2/αn]

• γ1(e) denotes e[v11/x1, . . . , vm1/xm] and γ2(e) denotes e[v12/x1, . . . , vm2/xm]

Rel[τ1, τ2] = {R ⊆ Val ×Val | ∀(v1, v2) ∈ R. ` v1 : τ1 ∧ ` v2 : τ2 }
Atom[τ]ρ = { (e1, e2) | ` e1 : ρ1(τ) ∧ ` e2 : ρ2(τ) }

V JαK ρ = { (v1, v2) | ρ(α) = (τ1, τ2, R) ∧ (v1, v2) ∈ R }
V Jτ → τ ′K ρ = { (λx:ρ1(τ). e1, λx:ρ2(τ). e2) ∈ Atom[τ → τ ′]ρ |

∀v1, v2. (v1, v2) ∈ V JτK ρ =⇒ (e1[v1/x], e2[v2/x]) ∈ E Jτ ′K ρ }
V J∀α. τK ρ = { (Λα. e1,Λα. e2) ∈ Atom[∀α. τ]ρ |

∀τ1, τ2, R. R ∈ Rel[τ1, τ2] =⇒ (e1[τ1/α], e2[τ2/α]) ∈ E JτK ρ[α 7→ (τ1, τ2, R)] }

E JτK ρ = { (e1, e2) ∈ Atom[τ]ρ | ∃v1, v2. e1 −→∗ v1 ∧ e2 −→∗ v2 ∧ (v1, v2) ∈ V JτK ρ }

D J·K = { ∅ }
D J∆, αK = { ρ[α 7→ (τ1, τ2, R)] | ρ ∈ D J∆K ∧ R ∈ Rel[τ1, τ2] }
G J·K ρ = { ∅ }
G JΓ, x : τK ρ = { γ[x 7→ (v1, v2)] | γ ∈ G JΓK ρ ∧ (v1, v2) ∈ V JτK ρ }

∆; Γ ` e1 ≈ e2 : τ
def
= ∀ρ, γ. ρ ∈ D J∆K ∧ γ ∈ G JΓK ρ =⇒ (ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ E JτK ρ

1

Theorem (Parametricity). If ∆; Γ ` e : τ then ∆; Γ ` e ≈ e : τ .

The proof is by induction on the typing derivation ∆; Γ ` e : τ .

• Case:
∆; Γ, x : τ ` e : τ ′

∆; Γ ` λx:τ. e : τ → τ ′
(Abs)

Proof

We are required to show that ∆; Γ ` λx:τ. e ≈ λx:τ. e : τ → τ ′.

Consider arbitrary ρ and γ such that

– ρ ∈ D J∆K, and

– γ ∈ G JΓK ρ.

We are required to show that (ρ1(γ1(λx:τ. e)), ρ2(γ2(λx:τ. e))) ∈ E Jτ → τ ′K ρ
≡ (λx:ρ1(τ). ρ1(γ1(e)), λx:ρ2(τ). ρ2(γ2(e))) ∈ E Jτ → τ ′K ρ.

Take v1 = λx:ρ1(τ). ρ1(γ1(e)).
Take v2 = λx:ρ2(τ). ρ2(γ2(e)).
We are required to show that

– λx:ρ1(τ). ρ1(γ1(e)) −→∗ λx:ρ1(τ). ρ1(γ1(e)),
which is immediate since λx:ρ1(τ). ρ1(γ1(e)) is a value,

– λx:ρ2(τ). ρ2(γ2(e)) −→∗ λx:ρ2(τ). ρ2(γ2(e)),
which is immediate since λx:ρ2(τ). ρ2(γ2(e)) is a value, and

– (λx:ρ1(τ). ρ1(γ1(e)), λx:ρ2(τ). ρ2(γ2(e))) ∈ V Jτ → τ ′K ρ,
which we conclude as follows:

Consider arbitrary v1 and v2 such that

∗ (v1, v2) ∈ V JτK ρ.

We are required to show (ρ1(γ1(e))[v1/x], ρ2(γ2(e))[v2/x]) ∈ E Jτ ′K ρ.
Applying the induction hypothesis to ∆; Γ, x : τ ` e : τ ′, we have that ∆; Γ, x : τ ` e ≈ e : τ ′.
Instantiate the latter with ρ and γ[x 7→ (v1, v2)]. Note that

∗ ρ ∈ D J∆K,
which follows from above, and

∗ γ[x 7→ (v1, v2)] ∈ G JΓ, x : τK ρ,
which follows from

· γ ∈ G JΓK ρ (follows from above), and

· (v1, v2) ∈ V JτK ρ (follows from above).

Hence, (ρ1((γ[x 7→ (v1, v2)])1(e)), ρ2((γ[x 7→ (v1, v2)])2(e))) ∈ E Jτ ′K ρ.
Thus, (ρ1(γ1(e))[v1/x], ρ2(γ2(e))[v2/x]) ∈ E Jτ ′K ρ, as we were required to show.

• Case:
∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1 e2 : τ2
(App)

Proof

We are required to show that ∆; Γ ` e1 e2 ≈ e1 e2 : τ2.

Consider arbitrary ρ and γ such that

– ρ ∈ D J∆K, and

– γ ∈ G JΓK ρ.

2

We are required to show that (ρ1(γ1(e1 e2)), ρ2(γ1(e1 e2))) ∈ E Jτ2K ρ
≡ (ρ1(γ1(e1)) ρ1(γ1(e2)), ρ2(γ2(e1)) ρ2(γ2(e2))) ∈ E Jτ2K ρ.

Applying the induction hypothesis to ∆; Γ ` e1 : τ1 → τ2, we have that ∆; Γ ` e1 ≈ e1 : τ1 → τ2.

Instantiate the latter with ρ and γ. Note that

– ρ ∈ D J∆K, and

– γ ∈ G JΓK ρ.

Hence, (ρ1(γ1(e1)), ρ2(γ2(e1))) ∈ E Jτ1 → τ2K ρ.

From the latter, there exist v1 and v2 such that

– ρ1(γ1(e1)) −→∗ v11,

– ρ2(γ2(e1)) −→∗ v12, and

– (v11, v12) ∈ V Jτ1 → τ2K ρ.

From the latter it follows that v11 = λx:ρ1(τ1). e11 and v12 = λx:ρ2(τ1). e12.

Applying the induction hypothesis to ∆; Γ ` e2 : τ1, we have that ∆; Γ ` e2 ≈ e2 : τ1.

Instantiate the latter with ρ and γ. Note that

– ρ ∈ D J∆K, and

– γ ∈ G JΓK ρ.

Hence, (ρ1(γ1(e2)), ρ2(γ2(e2))) ∈ E Jτ1K ρ.

From the latter, there exist v21 and v22 such that

– ρ1(γ1(e2)) −→∗ v21,

– ρ2(γ2(e2)) −→∗ v22, and

– (v21, v22) ∈ V Jτ1K ρ.

Instantiate (λx:ρ1(τ1). e11, λx:ρ2(τ1). e12) ∈ V Jτ1 → τ2K ρ (from above) with v21 and v22. Note
that

– (v21, v22) ∈ V Jτ1K ρ.

Hence, (e11[v21/x], e12[v22/x]) ∈ E Jτ2K ρ.

From the latter, there exist v1 and v2 such that

– e11[v21/x] −→∗ v1,

– e12[v22/x] −→∗ v2, and

– (v1, v2) ∈ V Jτ2K ρ.

Thus, there exist v1 and v2 such that

– ρ1(γ1(e1)) ρ1(γ1(e2)) −→∗ v1 (from above by operational semantics),

– ρ2(γ2(e1)) ρ2(γ2(e2)) −→∗ v2 (from above by operational semantics), and

– (v1, v2) ∈ V Jτ2K ρ, which follows from above.

3

Exercise 1. (20 pts) Do the Tabs and Tapp cases of the proof:

(a) Case:
∆, α; Γ ` e : τ

∆; Γ ` Λα. e : ∀α. τ
(Tabs)

(b) Case:
∆; Γ ` e : ∀α. τ ∆ ` σ

∆; Γ ` e [σ] : τ [σ/α]
(Tapp)

You may make use of the following lemmas:

Lemma (Compositionality, or “syntactic substitution equals semantic substitution”).
If ρ ∈ D J∆K and ∆ ` τ ′ and R = { (v′1, v

′
2) | (v′1, v

′
2) ∈ V Jτ ′K ρ },

then (v1, v2) ∈ V Jτ [τ ′/α]K ρ iff (v1, v2) ∈ V JτK ρ[α 7→ (ρ1(τ ′), ρ2(τ ′), R)].

Lemma (Well-typed inhabitants). If (v1, v2) ∈ V JτK ρ, then ` v1 : ρ1(τ) and ` v2 : ρ2(τ).

Let us add product types, existential types, and record types to System F.

τ ::= . . . | τ1 × τ2 | ∃α. τ | {`1 : τ1, . . . , `n : τn}
e ::= . . . | 〈e1, e2〉 | fst e | snd e | pack 〈τ ′, e〉 as ∃α. τ | unpack 〈α, x〉 = e1 in e2 |

{`1 = e1, . . . , `n = en} | e.`
v ::= . . . | 〈v1, v2〉 | pack 〈τ ′, v〉 as ∃α. τ | {`1 = v1, . . . , `n = vn}
E ::= . . . | 〈E, e2〉 | 〈v1, E〉 | fstE | sndE | pack 〈τ ′, E〉 as ∃α. τ | unpack 〈α, x〉 = E in e2 |

{`1 = v1, . . . , `i = E, . . . `n = en} | E.`

e −→ e′

fst 〈v1, v2〉 −→ v1
snd 〈v1, v2〉 −→ v2
unpack 〈α, x〉 = (pack 〈τ ′, v〉 as ∃α. τ) in e2 −→ e2[τ ′/α][v/x]
({`1 = v1, . . . , `i = vi, . . . `n = vn}).`i −→ vi

∆; Γ ` e : τ

∆; Γ ` e1 : τ1 ∆; Γ ` e2 : τ2

∆; Γ ` 〈e1, e2〉 : τ1 × τ2
(Pair)

∆; Γ ` e : τ1 × τ2
∆; Γ ` fst e : τ1

(Fst)
∆; Γ ` e : τ1 × τ2
∆; Γ ` snd e : τ2

(Snd)

∆ ` σ ∆; Γ ` e : τ [σ/α]

∆; Γ ` pack 〈σ, e〉 as ∃α. τ : ∃α. τ
(Pack)

∆; Γ ` e1 : ∃α. τ ∆ ` τ2 ∆, α; Γ, x : τ ` e2 : τ2

∆; Γ ` unpack 〈α, x〉 = e1 in e2 : τ2
(Unpack)

∆; Γ ` ei : τi forall i ∈ {1, . . . , n}
∆; Γ ` {`1 = e1, . . . , `n = en} : {`1 : τ1, . . . , `n : τn}

(Record)

∆; Γ ` e : {`1 : τ1, . . . , `i : τi, . . . , `n : τn}
∆; Γ ` e.`i : τi

(Proj)

4

The logical relation for the extended language is exactly as above, except that we must also define when
values of product, existential, and record types are related.

The value relation for products and existential types is defined as follows.

V Jτ1 × τ2K ρ = { (〈v1, v2〉, 〈v′1, v′2〉) ∈ Atom[τ1 × τ2]ρ | (v1, v
′
1) ∈ V Jτ1K ρ ∧ (v2, v

′
2) ∈ V Jτ2K ρ }

V J∃α. τK ρ = { (pack 〈τ1, v1〉 as ∃α. ρ1(τ), pack 〈τ2, v2〉 as ∃α. ρ2(τ)) ∈ Atom[∃α. τ]ρ |
∃R. R ∈ Rel[τ1, τ2] ∧ (v1, v2) ∈ V JτK ρ[α 7→ (τ1, τ2, R)] }

Recommended: Do the Pack and Unpack cases of the proof of parametricity.

Exercise 2. (5 pts) Define the value relation for record types.

Free Theorems

Exercise 3. (15 pts) Let ` e : ∀α. α→ α→ α, ` τ , ` v1 : τ , and ` v2 : τ .
Prove the following: If e [τ] v1 v2 −→∗ v then either v = v1 or v = v2.

Exercise 4. (30 pts) Let ` e : ∀α. α→ α, ` f : τ → τ ′, and ` v : τ .
Prove the following: ·; · ` f (e [τ] v) ≈ e [τ ′] (f v) : τ ′.

Representation Independence

Parametricity is the essence of representation independence for abstract data types.
A relation R ∈ Rel[τ1, τ2] captures the invariant relationship between two packages of type ∃α. τ :

pack 〈τ1, v1〉 as ∃α. τ and pack 〈τ2, v2〉 as ∃α. τ if and only if:

(v1, v2) ∈ V JτK ∅[α 7→ (τ1, τ2, R)]

When two packages e1 and e2 are logically related, they are indistinguishable by any client — that is,
the execution of a client ec cannot depend on whether e1 or e2 is the provided package. In other words, if
α;x : τ ` ec : τc, then

·; · ` unpack 〈α, x〉 = e1 in ec ≈ unpack 〈α, x〉 = e2 in ec : τc

For the exercises that follow, we must define when two values of type int are related. We use the
metavariable n for integers and extend the logical relation to integer types as follows:

V JintK ρ = { (n, n) ∈ Atom[int]ρ }

Exercise 5. (15 pts) For each of the following pairs of packages e1 and e2, say whether they are logically
related (contextually equivalent). If so, provide a proof. If not, provide a program context that can tell them
apart. (You may assume that the logical relation defined earlier in this document is sound with respect to
contextual equivalence.)

(a)
τ = ∃α. α× (α→ bool)
e1 = pack 〈int, 〈0, λx:int. (eq? x 1)〉〉 as τ
e2 = pack 〈bool, 〈true, λx:bool. not x〉〉 as τ

5

(b)
τ = ∃α. α× (α→ int)
e1 = pack 〈string, 〈“hello”, λx:string. (string-length x)〉〉 as τ
e2 = pack 〈int, 〈4, λx:int. x〉〉 as τ

Exercise 6. (15 pts) Show that the following two implementations of counters are logically related.

Counter = ∃α. {new : α,
inc : α→ α,
get : α→ int}

c1 = {new = 0,
inc = λx : int. x+ 1,
get = λx : int. x}

cntr1 = pack 〈int, c1〉 as Counter

c2 = {new = 0,
inc = λx : int. x− 1,
get = λx : int. 0− x}

cntr2 = pack 〈int, c2〉 as Counter

Prove the following: ·; · ` cntr1 ≈ cntr2 : Counter.

You will need to use the value relation for record types from Exercise 2.

6

