
CS7400 Problem Set 4 Due: 24 Feb 2017

You can turn in handwritten solutions to this assignment. Please write clearly and use standard-sized
(8.5 by 11in) paper. Solutions should be submitted before the beginning of class on the due date. If you
choose to typeset your solutions using LaTeX, you may find the mathpartir.sty package useful.

1. Warmup (10 pts.)

Consider the following command and store in the IMP language we covered in class:

c0 = if ((9 + 4) > 10) then x := 42 else x := 2
σ0 = {x 7→ 0}

(a) Draw the complete derivation tree showing one reduction step (small-step reduction) for 〈c0, σ0〉.
(b) Draw the complete derivation tree showing the big-step evaluation of 〈c0, σ0〉.

2. For Loop (25 pts.)

Consider IMPFOR, a version of IMP that has for loops instead of while loops. We redefine commands
c as follows:

c ::= skip | x := a | c0; c1 | if b then c1 else c2 | for x = a0 to a1 do c

Informally, the for loop works as follows. When entering the loop for x = a0 to a1 do c, the expression
a0 is evaluated to an integer n0 and the expression a1 is evaluated to an integer n1. If n0 > n1, the
command just behaves like skip. If n0 ≤ n1, the body c is executed n1 − n0 + 1 times, with x assigned
the value n0 + i − 1 at the beginning of the ith loop iteration. (For instance, if n0 = 3 and n1 = 5,
the body c will be executed 3 times, with x assigned the values 3, 4, and 5 at the beginning of the
first, second, and third iteration, respectively.) Note that the loop bounds are computed once at the
beginning of the loop, and no computation in the body of the loop can change the number of times
the loop is executed. That is, although the loop index variable x can be assigned within the body c of
the loop, these assignments do not affect the value of x at the beginning of the next loop iteration.

(a) Write a big-step operational semantics for the for x = a0 to a1 do c construct.

(b) Write an IMPFOR program that, given an input value in the variable n, computes the nth Fi-
bonacci number F (n) (where F (0) = 0, F (1) = 1, and F (n) = F (n− 1) + F (n− 2)), and returns
the result in variable r. You may assume that you have multiplication, addition, and subtraction
as built-in arithmetic operators.

3. Well-founded relations (25 pts.)

Which of the following relations are well-founded? Briefly explain why or why not.

(a) Dictionary ordering on strings of alphabetic characters (a-z).

(b) An ordering ≺ on pairs of natural numbers defined inductively by these rules:

n1 < n′1
(n1, n2) ≺ (n′1, n2)

n2 < n′2
(n1, n2) ≺ (n1, n

′
2)

(c) A relation ≺ on finite trees, where given two trees t and t′, t ≺ t′ iff t is exactly the same as t′

except that it is missing exactly one leaf.

(d) An ordering ≺ on finite sequences of natural numbers, where a sequence s of length n is preceded
by the subsequences of s and also by any sequence whose first n elements are all smaller than the
corresponding elements of s.

1

(e) A relation ≺ on partial functions in N⇀ N, where

f1 ≺ f2
4⇐⇒ f1 6= f2 ∧ dom(f1) ⊆ dom(f2) ∧ ∀x ∈ dom(f1). f1(x) ≤ f2(x).

4. Dangling references (50 pts.)

In class we claimed that during evaluation, uML! programs never generate dangling references. Let’s
prove it. Consider the fragment of uML! consisting of the following expressions and values:

e ::= n | x | ref e | ! e | e1 := e2 | null | λx. e | e1 e2 |
let x = e1 in e2 | (e1, e2) | let (x, y) = e1 in e2

v ::= n | (v1, v2) | null | λx. e (where λx. e is closed)

To define the small-step semantics of uML!, we augment the grammar of expressions and values with
a set of locations ` ∈ Loc.

e ::= . . . | `
v ::= . . . | `

A store σ is a partial map from locations to values (which could be other locations). The small-step
semantics of uML! programs was defined in terms of configurations 〈e, σ〉, where e is an augmented
expression and σ is a store. (For your reference, the small-step operational semantics of uML! is given
at the end of this document.)

We define loc(e) to be the set of locations that occur in the expression e. Thus, for example,
loc((! `2) (λx. (! `1)+! (ref 4))) = {`1, `2}.
A uML! program is a closed expression that does not contain any locations. Thus, if e is a program
then loc(e) = ∅.

(a) Consider the following uML! configuration:

〈 (λx. (! `1) 2) (ref 1) , {`1 7→ λy. ref y} 〉

Show the evaluation of this configuration. For each configuration 〈e′, σ′〉 in the evaluation, give
loc(e′).

(b) Give an inductive definition of the set loc(e) of locations occurring in e.

(c) Prove that if e is a uML! program and 〈e, ∅〉 −→∗ 〈e′, σ〉, then loc(e′) ⊆ dom(σ). If you use
induction, identify the relation you are using in your induction and argue that it is well-founded.

Small-Step Operational Semantics of uML!

Evaluation contexts

E ::= [·] | ref E | !E | E := e2 | v1 := E | E e2 | v1 E |
let x = E in e2 | (E, e2) | (v1, E) | let (x, y) = E in e2

Reductions

〈ref v, σ〉 −→ 〈`, σ[` 7→ v]〉 (where ` /∈ dom(σ))
〈! `, σ〉 −→ 〈σ(`), σ〉 (where ` ∈ dom(σ))

〈` := v, σ〉 −→ 〈null, σ[` 7→ v]〉 (where ` ∈ dom(σ))
〈(λx. e) v, σ〉 −→ 〈e[v/x], σ〉

〈let x = v in e, σ〉 −→ 〈e[v/x], σ〉
〈let (x, y) = (v1, v2) in e, σ〉 −→ 〈e[v1/x][v2/y], σ〉

Context rule

〈e, σ〉 −→ 〈e′, σ′〉
〈E[e], σ〉 −→ 〈E[e′], σ′〉

2

