CS4410 @ Spring 2013

Simple Code Generation

Code Generation

Next PS: Map Fish code to MIPS code
Issues:

eliminating compound expressions
eliminating variables
encoding conditionals, short-circuits, loops

Source

type exp =
Var of var
| Int of int
| Binop of exp * binop * exp
| Not of exp
| Or of exp * exp
| And of exp * exp
| Assign of wvar * exp

Target: MIPS

type label = string

type reg =
RO | Rl | R2 | .. | R31

type operand =
Reg of reg
| Immed of word

MIPS continued

type 1inst =

Add of reg * reg * operand
Li of reg * word

Slt of reg * reg * operand
Beq of reg * reg * label
Bgez of reg * label

J of label

La of reg * label

ILw of reg * reg * word

Sw of reg * reg * word
Label of label |

Variables

Fish only has global variables.

These can be placed in the data segment.

.data
.align O
x: .word O
y: .word O
z: .word O

Variable Access

Tocompilex = x+1

la $3, x ; load x's address
lw $2, 0($3) ; loadx'svalue
addi $2,$2,1 ; adda

sw $2, 0($3) ; storevalueinx

First Problem: Nested Expr's

Source:
Binop(Binop(x,Plus,y),Plus,Binop(w,Plus, z))
Target:
add rd, rs, rt

What should we do?

A Simple Strategy

Given: Binop(A,Plus,B)

translate A so that resultends up in a
particular register (e.g., $3)

translate B so that result ends up in a
different reqgister (e.q., $2)

Generate: add $2, $3, $2

Problems?

Strateqgy Fixed:

Invariants:
results always placed in $2
Given: Binop(A,Plus,B)
translate A
save $2 somewhere
translate B
Restore A's value into register $3
Generate: add $2, $3, $2

For example:

Binop(Binop(x,Plus,y),Plus,Binop(w,Plus,z))

1. compute x+y, placing resultin $2

2. store result in a temporary t1

3. compute w+z, placing result in $2

4. load temporary t1into a register, say $3
5.add $2, $3, $2

Expression Compilation

exp2mips (i:exp) :inst list
i

Int j [Li(R2, Word32.fromInt j)]
Var x [La(R2,x), Lw(R2,R2,zero)]
Binop(il,b,12)

(t new temp ()

(exp2mips il) @ [La(R1l,t), Sw(R2,R1l,zero)]
@ (exp2mips i2) @ [La(R1l,t), Lw(R1l,R1l,zero)]
Q(b
Plus [Add (R2,R2,Reg R1)]
.. c..))
Assign(x,e) [exp2mips e] @
[La(R1l,x), Sw(R2,R1l,zero)]

Statements

stmt2mips (s:stmt) :inst list
S
ExXp e
exp2mips e
Seq(sl,s2)
(stmt2mips sl1) @ (stmt2mips s2)
If(e,sl,s2)
(else 1 new_label ()
end 1 new_label ()
(exp2mips b) @ [Beq(R2,R0,else 1)] @
(stmt2mips sl) @ [J end 1,Label else 1] @
(stmt2mips s2) @ [Label end 1])

Statements Continued

While (e, s)
(test 1 new_label ()
top 1 new_label ()
[J test 1, Label top 1] @
(stmt2mips s) @
[Label test 1] @
(exp2mips b) @
[Bne (R2,R0,top 1)1])
For (el,e2,e3, s)
stmt2mips (Seq(Exp el,While(e2,Seq(s,Exp e3))))

Lots of Inefficiencies:

Compiler takes O(n?) time due to @.

No constant folding.

For"if (x == y) sl else s2"wedoaseq
followed by a beg when we could just do a beg.
For"if (bl && b2) sl else s2"wecould
just jump to s2 when bl is false.

_ots of 1la/1wand 1la/swfor variables.

Forel + e2, we always write out el's value to
memory when we could just cache it in a register.

Naive append:

fun append nil y =y
| append (h::t) y = h:: (append t y)

Tail-recursive append:

fun revapp nil y = vy

| revapp (h::t) y = revapp t (h::y)
fun rev x = revapp x []
fun append x y = revapp (rev x) y

Accumulater-Based:

exp2mips' (i:exp) (a:inst list) :inst list
i

exp2mips (i:exp) (exp2mips' i [])

Constant Folding: Take 1

exp2mips' (1:F.iexp) (a:inst list)

i
Int w Li(R2, Word32.fromInt w) :: a
Binop(il,Plus,Int 0) exp2mips' il a

Binop (Int il,Plus,Int i2)
exp2mips' (Int (il1+i2)) a

Binop (Int il,Minus,Int i2)
exp2mips' (Int (11-i2)) a

Binop(b,il,i2)

Why isn't this great? How can we fix it?

Conditional Contexts

Consider: if (x<y)then S1else S2

slt $2, $2, S$3
beq $2, ELSE
S1
J END
ELSE:
S2
END :

Observation

In most contexts, we want a value.

But in a testing context, we jump to one place
or another based on the value, and otherwise
never use the value.

In many situations, we can avoid
materializing the value and thus produce
better code.

For Example:

bexp2mips (e:exp) (t:label) (f:label) =

e
Int O [T £]
Int [T t]
Binop (el,Eq,e2)
(t = temp()

(exp2mips el) @
[La(R1l,t), Sw(R2,R1l,zero)] @
(exp2mips e2) @
[La(R1l,t), Lw(R1l,R1l,zero),
Bne(R1,R2,f), J t])

(exp2mips el) @ [Beq(R2,R0,f), J t]

Global Variables:

We treated all variables (including temps) as if
they were globals:
set aside data with a label

to read: load address of label, then load value
stored at that address.

to write: load address of label, then store value at
that address.

This is fairly inefficient:
e.g., x+x involves loading x's address twice!
lots of memory operations.

Register Allocation:

One optionis to allocate a register to hold a
variable's value:
Eliminates the need to load an address or do
memory operations.
Will talk about more generally later.

Of course, in general, we can't avoid it when code
has more (live) variables than registers.

Can we at least avoid loading addresses?

Set aside one block of memory for all of the
variables.

Dedicate $30 (aka $fp) to hold the base

address of the block.
Assign each variable a
position within the block
(x—0, y—4, z—8, etc.)
Now loads/stores can be
done relative to $fp:

—

Before and After:

z = x+1
lda $1,x lw $2,0(Sfp)
lw $2,0($1) addi $2,$2,1
addi $2,$2,1 sw $2,8 (Sfp)
lda $1,z

sw $2,0(81)

Lowering

Get rid of nested expressions before
translating

Introduce new variables to hold intermediate
results

Perhaps do things like constant folding
Forexample,a = (x + y) + (z + w)
might be translated to:
t0 :=x + y;
tl := z + w;

a := t0 + t1;

12 Instructions (9 memory)

t0 :=x + y; 1w $Sv0, <xoff>($fp)
lw Svl, <yoff>($fp)
add $v0, $vO0, Svl
sw $v0, <tOoff>(Sfp)

tl =z + w; lw $Sv0, <zoff>($fp)

lw $Svl, <woff>(Sfp)
add $v0, S$vO0, Svl
sw $Sv0, <tloff>(Sfp)
t0 + t1; lw $v0, <tOoff> ($Sfp)
lw Sv1, <tloff>(Sfp)
add $v0, $vO0, Svl
sw Sv0, <aoff>(S$fp)

a .

We're doing a lot of stupid loads and stores.
We shouldn't need to load/store from temps!

(Nor variables, but we'll deal with them later...)

So another idea is to use registers to hold the
intermediate values instead of variables.

Of course, we can only use registers to hold some number
of temps (say k).
Maybe use registers to hold first k temps?

For example:

t0 = x; # load wvariable
tl = y; # load variable
t2 := t0 + tl; # add
t3 = z; # load wvariable
td = w; # load variable
t5 := t3 + t4; # add
t6 := t2 + t5; # add
a := té6; # store result

Then: 8 instructions (5 mem!)

Notice that each little statement can be directly
translated to MIPs instructions:

t0
tl
t2
t3
t4
t5
té
a

= X,
= vy;
= t0 + t1;
z;
= w;
= t3 + t4;
= t2 + t5;
:= t6;

lw $t0,<xoff>(S£fp)
lw $tl,<yoff>(Sfp)
add $t2,$t0,stl
1w $t3,<zoff> ($£fp)
lw $t4,<woff>(Sfp)
add $t5,$t3,st4
add $t6,S$t2,S$t5
sw $t6,<aoff>(Sfp)

Recycling:

Sometimes we can recycle a temp:

t0 = x;
tl = vy;
t2 := t0 + t1;
t3 = z;
t4d = w;
t5 = t3 + t4;
te := t2 + t5;

a := t6;

Tracking Available Temps:

Hmmm. Looks a lot like a stack...

t0 = x;
tl = vy;
t0 := t0 + t1l
tl = z;
t2 = w;
tl = t1 + t2
tl := t0 + tl
a := tl

Finally, consider:

t0 := x;
tl = vy,
t0 := x+y
tl = x;

(-r
o
Il
(-l.
O ~.
*
(-lp
|—l

Good Compilers: (not this proj!)

Introduces temps as described earlier:

It lowers the code to something close to assembly,
where the number of resources (i.e., registers) is made
explicit.

Ideally, we have a 1-to-1 mapping between the lowered
intermediate code and assembly code.

Performs an analysis to calculate the live range of each
temp:
A temp tis live at a program point if there is a

subsequent read (use) of t along some control-flow path,
without an intervening write (definition).

The problem is simplified for functional code since
variables are never re-defined.

Interference Graphs:

From the live-range information for each temp,
we calculate an interference graph.

Temps t1 and t2 interfere if there is some program point
where they are both live.

We build a graph where the nodes are temps and the
edges represent interference.

If two temps interfere, then we cannot allocate them to
the same register.

Conversely, if £1 and t2 do not interfere, we can use the
same register to hold their values.

Register Coloring

Assign each node (temp) a register such that if t1
interferes with t2, then they are given distinct
colors.

Similar to trying to "color" a map so that adjacent
countries have different colors.

In general, this problem is NP complete, so we must use
heuristics.

Problem: given k registers and n > k nodes, the
graph might not be colorable.

Solution: spill a node to the stack.

Reconstruct interference graph & try coloring again.

Trick: spill temps that are used infrequently and/or have
high interference degree.

t0
tl
t2
t3
t4
t5
a

(xt+y) * (x+2z)

X

y
Z

t0+tl

t0+t2

t3*t4
t5

_\

_/

}

live range for t4

live range for 5

> live range for t1 @ @

t0
tl
t2
t3
t4
t5
a

(xt+y) * (x+2z)

X

y
Z

t0+tl

t0+t2

t3*t4
t5

_\

_/

}

> live range for t1 @

live range for t4

live range for 5

Coloring:

a := (x+y) *(x+2z) (1) 5
t0 := x ~
tl (= vy >+ live range for t1 (12 ()

t2 := z

t3 := t0+tl -

t4d := t0+t2

t5 = t3*t4 live range for t4

a = t5 live range for 5

Coloring:

a :'= (x-l-y) * (X'l'Z)

t0 = x R

tl := Y >~ live range for t1
t2 = z

t3 := t0+tl -

td := t0+t2

t5 = t3*t4 live range for t4
a := t5

live range for 5

Assignment:

a

t0
tl
t2
t3
t4
t5
a

(xt+y) * (x+2z)

X

y
Z

t0+tl

t0+t2

t3*t4
t5

Rewrite:

t0 := x
tl =y

t2 = z &)

t3 = t0+tl . t0
t0 := t0+t2

t0 := t3*t0 — tl

a := to0

Generate Code

a := (x+y) *(x+2z)

t0 := x --> 1lw $tO0,<xoff> (Sfp)
tl =y --> 1w $tl,<yoff>(Sfp)
t2 = z --> 1lw $t2,<zoff> (Sfp)
t3 := t0+tl --> add $t3,$t0,5tl
t0 := t0+t2 --> add $t0,$t0,S$t2

t0 := t3*t0 --> mul $t0,S$t3,$t2
a := to --> sw $t0,<aoff>(Sfp)

