CS4410 @ Spring 2013

A little bit about LR Parsing

Background

We'll see three ways to write parsers:
By hand, typically recursive descent
Using parsing combinators

In both of these, left-recursion is a problem.
Using tools like Lex and Yacc
Lex: limited to regular expressions
Compile regexp to NDFA, then to DFA
Yacc: limited to LALR(2) grammars

Read details in book! This is just intuition.

Various Kinds of Grammars

General context free grammars.

Regular expressions (no recursion).

LL(k): left-to-right, left-most derivation with k
symbol lookahead.

LR(k): left-to-right, right-most derivation with
k symbol lookahead.

SLR(k) and LALR(k) are restricted variants that are
almost as good, but much more space-efficient.

Intuition Behind Predictive Parsing

Parsing combinators make it easy to write recursive
descent parsers, but do lots of back-tracking:

alt prp2=funcs->(p1cs) @ (p2cs)

We run p1 on the string cs, then back up and run p2 on the
same input.

It would be much better if we could predict whether to
select p1 or p2 and avoid running both of them.

Want a procedure first(p), which computes the set of
characters that strings matching p can start with:

Check if the next input character is in p1 —if not, then we
can skip it. Similarly with p2.

Ideally, it's only in one so we don’t have to backtrack.

Computing First Sets

e 2t|t+e
t >INT|(e)

first(e) = first(t)
first(t) = {INT, (}

Seems pretty easy.

N->a|MPQ
M-=2>b|e
P> c*
Q—=>dN

First(N) = {a} + first(M)?

But consider...

first(N) = {a} + first(M)?

Since M can match the empty string, N might start
with a character in first(P). And since P can

match the empty string, it must also include
first(Q)!

But consider...

first(N) = {a} + first(M) + first(P) + first(Q)
={a,b,c,d}

Since M can match the empty string, N might start
with a character in first(P). And since P can

match the empty string, it must also include
first(Q)!

In General:

Given a parsing expression (X1 X2 ... Xn)
To compute it's first set:

Add first(Xa).

Check if X1 is nullable (i.e., derives empty string).

If so, then ada
So we nheed a

first(X2), and if X2 is nullable, ...
brocedure to check if a non-

terminal is nu

lable.

Not Enough

In general, our alternatives will not have disjoint
first(-) sets.

We could try to transform the grammar so that this is
the case.

We effectively did this for reqular expressions by
compiling to NDFAs and then to DFAs.

Alternatively, we can calculate the derivative of the
grammar with respect to each element of the first set.

Unfortunately, for CFGs, the derivatives (or states) are
not finite...

So a tool likeYacc does a lot more...

LR(1) Parsing a laYacc

Use a stack and DFA:

The states correspond to parsing items
Roughly, a set of productions marked with a position.
Equivalently, a derivative
Lets us effectively remember where we came from.

The DFA tells us what to do when we peek at the next
character in the input.
For LR(k), we look at k-symbols of input.

By using the first sets (and other computations, like follow sets), we
can predict what production(s) we should work with and avoid back-
tracking.

Possible actions:
Shift the input symbol, pushing it onto the stack.
Reduce symbols on the top of the stack to a non-terminal.

1.e 2 INT
2.e 2> (e)
.e>e+e
Stack: Input:

[] (3+4)+(5+6)

1.e 2 INT
2.e > (e)
.e>e+e
Stack:

[]

Shift the '(* onto the stack.

Input:
(3+4)+(5+6)

1.e 2 INT

2.e 2> (e)

.e>e+e

Stack: Input:

[] (3+4)+(5+6)

['("] 3+4)+(5+06)

1.e 2 INT
2.e 2> (e)
.e>e+e
Stack:

[]
['("]

Can’t reduce, so shift the 3
onto the stack.

Input:
(3+4)+(5+6)
3+4)+(5+06)

1.e 2 INT

2.e 2> (e)

.e>e+e

Stack: Input:

] (3+4)+(5+6)
('] 3+4)+(5+6)
(S INT] +4) +(5+6)

1.e 2 INT

2.e 2> (e)

3. € > e+e Reduce by production 1
Stack: Input:

! (3+4)+(5+6)
(] 3+4) + (5 +6)
:\(\IINT] + 4) + (5 + 6)

1.e 2 INT

2.e 2> (e)

.e>e+e

Stack: Input:

] (3+4)+(5+6)
('] 3+4)+(5+6)
(S INT] +4) +(5+6)
(€] +4) + (5 +6)

1.e 2 INT

2.6 2 (S) Shift the '+’ onto the stack
3.e>e+e

Stack: Input:

i (3+4)+(5+06)
('] 3+4)+(5+06)
M (,INT] +4) + (5 +6)
(el +4)+(5+6)

1.e 2 INT
2.e 2> (e)
.e>e+e
Stack:

[C,e,+]

Shift 4 onto stack.

Input:
4) +(5+6)

1.e 2 INT
2.e 2> (e)
.e>e+e
Stack:

[\(\Iell+l]
[\(\Ie’I+II|NT]

Reduce using rule 1

Input:
4) +(5+6)
)+ (5+6)

1.e 2 INT

2.e > (e)

3. € > e+e Reduce again with rule 3.
Stack: Input:

(e, +'] 4 + (5 +6)
:\(\Ie”+’I|NT]) + (5 + 6)
:\(\Iell+lle]) + (5 + 6)

1.e 2 INT

2.e 2> (e)

.e>e+e

Stack: Input:

(e, '+] 4) + (5 +6)
(e, +' INT])+ (5 + 6)
(e, + €]) + (5 +6)
(€]) + (5 +6)

1.e 2 INT

2.e 2 (e) Shift ') onto the stack
.e>e+e

Stack: Input:

(e, '+] 4) + (5 +6)
(e, +' INT])+ (5 + 6)
(e, + €]) + (5 +6)
(el) +(5+6)

1.e 2 INT

2.e 2> (e)

.e>e+e

Stack: Input:

(e, '+ €]) +(5+06)
(el) + (5 + 6)
(,e,)] +(5+6)

1.e 2 INT

2.e 2> (e)

.e>e+e Reduce by rule 2.
Stack: Input:

(e, el) + (5 + 6)
(el)+ (5 +6)
(e, oo

1.e 2 INT

2.e 2 (e)

J.e>e+e

Stack: Input:

(e, + €])+ (5+6)
(el)+ (5+6)
(e,] +(5+6)
e] +(5 +6)

1.e 2 INT

2.e 2 (e) Continuing on...

J.e De+e

Stack: Input:
:\(\Iell_l_lle]) + (5 + 6)
:\(\Ie]) + (5 + 6)
'(,e,)] +(5+6)
:e] + (5 + 6)

1.e 2 INT

2.e 2> (e)

.e>e+e

Stack: Input:

e] + (5 + 6)
e,'+'] (5+6)
e,'+,'("] 5+ 6)
e,'+',"(",INT] + 6)

1.e 2 INT
2.e 2> (e)
.e>e+e
Stack:

e,+','(,INT]
e, +,(,e]

e, '+,'(e,/+]
e,'+','(",e,"+"INT]

Input:

+ 6)
+ 6)

1.e 2 INT
2.e 2> (e)
.e>e+e
Stack

B I I 17

e, '+,'("e,'+
Z”’(e]
e,'+,'("e,")]

- I Il(eI+l |NT]

€]

Input:

)

)
)

<none>

1.e 2 INT
2.e 2> (e)
.e>e+e
Stack:

:e’l+lll(\l e’I)l]
e+, e]
€]

Input:
<none>

Right-Most Derivation

If we read the sequence of stacks backwards,
we are always expanding the right-most non-
terminal. (Hence the "R” in LR parsing.)

Stack

I I 17

e, '+, '("e, +',¢e)]
e ”’(e,’)]
e+ e]

e]

The Tricky Part

When do we shift and when do we reduce?

In general, whether to shift or reduce can be hard to
figure out, even when the grammar is unambiguous.

When it is ambiguous, we get a conflict:

Reduce-Reduce: Yacc can't figure out which of two
productions to use to collapse the stack.

Shift-Reduce: Yacc can’t figure out whether it should shift or
whether it should reduce.

Look at generated parse.grm.desc file for details.
Two fixes:

Use associativity & precedence directives

Rewrite the grammar

For Our Simple Grammar

State o:

e: . INT
e:] \(\e\)l
e:.e'+'e

State 1:
e:e.'+'e

State 2:
e:'(".e)

State 3:
e:INT.

(shift INT 3)
(shift'(* 2)
(or goto state 6)

(shift '+’ 4)
(shift INT 3)
(shift '(* 2)

(reduce rule o)

State 4:
e:e'+' .e (shiftINT3)
(shift '(* 2)

Y (shift) 7)
e:e.'+'e (shift'+' 4)

State 6:

e:e.'+'e (shift'+' 4)
e:e'+'e. (reducerule?2)
State 7:

e:'("e'). (reducerulei)

In this case:

The fix is to tell Yacc that we want + to be left-
associative (in which case it will reduce
instead of shifting.)
Alternatively, rewrite:

e >t

e>t+e

t =2 INT

t=2(e)

Another Example:

S—>var:=e;
s 2 ifethenselses
s 2 ifethens

Conflict

if e then (if e then x := 3; else x := 4)
if e then (if ethen x:=3;) else x:= 4

By default, Yacc will shift instead of reducing.
(So we get the first parse by default.)
Better to engineer this away...
Ideally, put in an ending delimiter (end-if)
Or refactor grammar...

Refactoring

s =2 0S
0S 2 var:=e;
- if ethen os

- if ethen cs else os
CsS > var:=e;
- if e then cs else cs

if e then if e then x:=3; else x:=4;

WhatYou Need to Know

I'm less concerned that you understand the
details in constructing predictive parsing tables.

Read the chapters in Appel.

They will help you understand whatYacc is doing.
You should be able to build parsers using Yacc for
standard linguistic constructs.

That means understanding what conflicts are, and
how to avoid them.

Hence the Fish front-end.
Real grammars are, unfortunately, rather ugly.

One More Consideration

Error messages:

Yacc will generate an error message, but it can easily get
confused.
e.g., if you forget a closing parenthesis or misspell a keyword.
Particularly bad for cascading errors.

You can add so-called error productions to the grammar for
common mistakes so that you get a more informative error
message.

Yacc will try to continue when it finds an error by inserting or
skipping over tokens (basically a hack.)

Probably the right thing to do is fall back on the general search
paradigm to find possible “close” parses and pick the one that
minimizes the syntax errors.

Simple grammars (a la Scheme) result in much better error
messages and error recovery.

