CS4410 @ Spring 2013

Lexing & Parsing

PSO due Wednesday, 11:59pm

Reading:
Relevant chapters on Lexing & Parsing in Appel
OCamlLex & OCamlYacc documentation + tutorial

Parsing

Two pieces conceptually:
Recognizing syntactically valid phrases.

Extracting semantic content from the syntax.
E.g., What is the subject of the sentence?
E.g., What is the verb phrase?

E.g., Is the syntax ambiguous? If so, which meaning do we
take?

“Fruit flies like a banana”

“2*3+47

ety
In practice, solve both problems at the same
time.

Specifying Syntax

We use grammars to specify the syntax of a
language.

exp =P int | var | exp '+ exp | exp '*' exp |
‘let’ var ‘=" exp ‘in" exp ‘end’

int =» -"?digit+

var =» alpha(alphaldigit)*

digit=» ‘o' |2 [2" |3 '4"| ... |9’

alpha =» [a-zA-Z]

Naive Matching

To see if a sentence is legal, start with the first
non-terminal), and keep expanding non-
terminals until you can match against the
sentence.

N=> a2 | (N) “((a))”

N=> (" N)
=2 C CN)Y)
= C C an)Y) = (@)

Alternatively

Start with the sentence, and replace phrases
with corresponding non-terminals, repeating
until you derive the start non-terminal.

N=> " | ("N) “((a))”

Highly Non-Deterministic

For real grammars, automating this non-deterministic
search is non-trivial.

As we’ll see, naive implementations must do a lot of back-
tracking in the search.

|deally, given a grammar, we would like an efficient,
deterministic algorithm to see if a string matches it.

There is a very general cubic time algorithm.
Only linguists use it ©.

(In part, we don’t because recognition is only half the problem.)
Certain classes of grammars have much more efficient
implementations.

Essentially linear time with constant state (DFAs).

Or linear time with stack-like state (Pushdown Automata).

Tools in your Toolbox

Manual parsing (say, recursive descent).
Tedious, error prone, hard to maintain.
But fast & good error messages.

Parsing combinators

Encode grammars as (higher-order) functions.
Basically, functions that generate recursive-descent parsers.
Makes it easy to write & maintain grammars.

But can do a lot of back-tracking, and requires a limited form of
grammar (e.g., no left-recursion.)
Lex and Yacc

Domain-Specific-Languages that generate very efficient, table-driven
parsers for general classes of grammars.

Learn about the theory in CS3800

Need to know a bit here to understand how to effectively use these
tools.

CS4410 @ Spring 2013

Regular Expressions
&Finite-State Automata

Regular Expressions

Non-recursive grammars
€ (epsilon —matches empty string)
Literals (*a’, 'b’, 2/, '+, etc.) drawn from alphabet
Concatenation (R, R,)
Alternation (R, | R,)

Kleene star (R*)
Non-terminals are expanded away

S=>»abX*b S=>ab(c|d)*b

X = (c|d)
As are other abbreviations (e.g., R+ = RR¥*)

Graphical Representation

Non-Deterministic, Finite-State
Automaton

Formally:

e an alphabet 2
* a set V of states
* a distinguished start stateg
* one or more accepting states

e transition relation: o:V * (2 +¢)*V = bool

Translating RegExps
o—©@
Literal ‘a": ‘a=>‘

Epsilon:

Translating RegExps

R* £

e

Converting to Deterministic

Naively:
Give each state a unique ID (3,2,3,...)

Create super states

One super-state for each subset of all possible states in the
original NDFA.

(e.g., {a},12},13%,12,2},11,3},12,3},1223})
For each super-state (say {23}):

For each original state s and character c:
Find the set of accessible states (say {1,2}) skipping over epsilons.

Add an edge labeled by ¢ from the super state to the corresponding
super-state.

In practice, super-states are created lazily.

5
C
d
4.6,2°
c b
b
1.8, Db 3 (7
d J C

Once We have a DFA

Deterministic Finite State automata are easy to
simulate:

For each state and character, there is at most one
transition we can take.
Usually record the transition function as an

array, indexed by states and characters.
Lexer starts off with a variable s initialized to the
start state:
Reads a character, uses transition table to find next
state.
Look at the output of Lex!

