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Monadic Form vs CFGs 
Consider CFG available exp. analysis: 
statement     gen's         kill's 
x:=v1 p v2      x:=v1 p v2  {y:=e | x=y or x in e} 
 
When variables are immutable, simplifies to:  
statement     gen's         kill's 
x:=v1 p v2      x:=v1 p v2  {} 
 
(Assumes variables are unique.) 
 



Monadic Form vs CFGs 
Almost all data flow analyses simplify when 

variables are defined once. 
– no kills in dataflow analysis 
– can interpret as either functional or imperative 

 
Our monadic form had this property, which 
made many of the optimizations simpler. 

– e.g., just keep around a set of available 
definitions that we keep adding to. 

 



On the other hand… 
CFGs have their own advantages over 

monadic form. 
– support control-flow graphs not just trees. 
 

if b < c then              if b >= c goto L1 
  let x1 = e1              x1 := e1 
      x2 = e2              x2 := e2 
      x3 = x1 + x2         goto L2 
  in x3                L1: x1 := e4 
else                       x2 := e5 
  let x1 = e4          L2: x3 := x1 + x2 
      x2 = e5 
      x3 = x1 + x2 
  in x3 
 

                    
 
 



Best of both worlds… 
Static Single Assignment (SSA) 

– CFGs but with functional variables 
– A slight “hack” to make graphs work out 
– Now widely used (e.g., LLVM). 
–  Intra-procedural representation only. 

Continuation Passing Style (CPS) 
–  Inter-procedural representation. 
– So slightly more general. 
– Used by FP compilers (e.g., SML/NJ). 



The idea behind SSA 
Start with CFG code and give each 

definition a fresh name, and propagate 
the fresh name to subsequent uses. 

 
x := n   x0 := n 
y := m            y0 := m 
x := x + y        x1 := x0 + y0 
return x          return x1 
      

                    
 
 



The problem… 
What do we do with this? 

x := n!
y := m!
if x < y !

x := x+1!
y := y-1!

y := x+2 !

z := x * y!
return z!



The problem… 
In particular, what happens at join points? 

x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

z0 := x? * y?!
return z0!



The solution:  “phony” nodes 
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!



The solution:  “phony” nodes 
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

A phi-node is a 
phony “use” of a 
variable.   
 
From an analysis 
standpoint, it’s as 
if an oracle chooses 
to set x2 to either 
x1 or x0 based on 
how control got 
here. 



Variant: gated SSA 
x0 := n!
y0 := m!
c0 := x0 < y0!
if c0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(c0 ? x1 : x0)!
y3 := φ (c0 ? y1 : y2)!
z0 := x2 * y3!
return z0!

Use a functional 
“if” based on the  
tests that brought 
you here. 



Back to normal SSA 
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

Compilers often build 
an overlay graph that 
connects definitions 
to uses (“def-use” 
chains.) 
 
Then information 
really flows along 
these SSA def-use 
edges (e.g., constant 
propagation.) 
 
Some practical 
benefits to SSA def-
use over CFG… 
(see Appel, Ex. 19.8) 
 



Two Remaining Issues 
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

How do we  
generate SSA  
from the CFG 
representation? 
 
How do we 
generate CFG 
(or MIPS) from 
the SSA? 



SSA back to CFG 
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

Just realize the 
assignments 
corresponding to 
the phi nodes on 
the edges. 



SSA back to CFG 
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!
x2 := x1!
y3 := y1!

y2 := x0+2!
x2 := x0!
y3 := y2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

Just realize the 
assignments 
corresponding to 
the phi nodes on 
the edges. 



SSA back to CFG 
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!
x2 := x1!
y3 := y1!

y2 := x0+2!
x2 := x0!
y3 := y2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

You can always rely 
upon either a copy 
propagation pass or a 
coalescing register 
allocator to get rid of 
all of these copies. 
 
But this can blow up 
the size of the code 
considerably, so there 
are better algorithms 
that try to avoid this. 



Naïve Conversion to SSA 
•  Insert phi nodes in each basic block except the 

start node. 
•  Calculate the dominator tree. 
•  Then, traversing the dominator tree in a 

breadth-first fashion: 
–  give each definition of x a fresh index 
–  propagate that index to all of the uses 

•  each use of x that’s not killed by a subsequent definition. 
•  propagate the last definition of x to the successors’ phi 

nodes. 



Example: 

B1 x := n!
y := m!
a := 0!

a := a + y!
x := x – 1 !

if x > 0!

z := a + y!
return z!



Insert phi 
B1 
x := n!
y := m!
a := 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
a := a + y!
x := x – 1 !

x := φ(x,x)!
y := φ(y)!
a := φ(a,a)!
if x > 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
z := a+y!
return z!



Dominators 
B1 
x := n!
y := m!
a := 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
a := a + y!
x := x – 1 !

x := φ(x,x)!
y := φ(y)!
a := φ(a,a)!
if x > 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
z := a+y!
return z!



Successors 
B1 
x0 := n!
y0 := m!
a0 := 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
a := a + y!
x := x – 1 !

x := φ(x0,x)!
y := φ(y0)!
a := φ(a0,a)!
if x > 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
z := a+y!
return a!



Next Block 
B1 
x0 := n!
y0 := m!
a0 := 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
a := a + y!
x := x – 1 !

x1 := φ(x0,x)!
y1 := φ(y0)!
a1 := φ(a0,a)!
if x1 > 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
z := a+y!
return z!



Successors 
B1 
x0 := n!
y0 := m!
a0 := 0!

x := φ(x1)!
y := φ(y1)!
a := φ(a1)!
a := a + y!
x := x – 1 !

x1 := φ(x0,x)!
y1 := φ(y0)!
a1 := φ(a0,a)!
if x1 > 0!

x := φ(x1)!
y := φ(y1)!
a := φ(a1)!
z := a+y!
return z!



Next Block 
B1 
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x)!
y1 := φ(y0)!
a1 := φ(a0,a)!
if x1 > 0!

x := φ(x1)!
y := φ(y1)!
a := φ(a1)!
z := a+y!
return z!



Successors 
B1 
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x3)!
y1 := φ(y0)!
a1 := φ(a0,a3)!
if x1 > 0!

x := φ(x1)!
y := φ(y1)!
a := φ(a1)!
z := a+y!
return z!



Last Block 
B1 
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x3)!
y1 := φ(y0)!
a1 := φ(a0,a3)!
if x1 > 0!

x4 := φ(x1)!
y4 := φ(y1)!
a4 := φ(a1)!
z0 := a4+y4!
return z0!



Key Problem 
B1 
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x3)!
y1 := φ(y0)!
a1 := φ(a0,a3)!
if x1 > 0!

x4 := φ(x1)!
y4 := φ(y1)!
a4 := φ(a1)!
z0 := a4+y4!
return z0!

Quadratic in  
the size of the 
original graph! 



Key Problem 
B1 
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x3)!
y1 := φ(y0)!
a1 := φ(a0,a3)!
if x1 > 0!

x4 := φ(x1)!
y4 := φ(y1)!
a4 := φ(a1)!
z0 := a4+y4!
return z0!

Could clean up 
using copy  
propagation and 
dead code  
elimination. 



Key Problem 
B1 
x0 := n!
y0 := m!
a0 := 0!

a3 := a1 + y0!
x3 := x1 – 1 !

x1 := φ(x0,x3)!
a1 := φ(a0,a3)!
if x1 > 0!

z0 := a1+y0!
return z0!

Could clean up 
using copy  
propagation and 
dead code  
elimination. 



Smarter Algorithm 
•  Compute the dominance frontier. 
•  Use dominance frontier to place the phi 

nodes.  
–  If a block B defines x then put a phi node in 

every block in the dominance frontier of B. 
•  Do renaming pass using dominator tree. 

This isn’t optimal but in practice, produces 
code that’s linear in the size of the input and 
is efficient to compute. 



Dominance Frontiers 
Defn:  d dominates n if every path from the 
start node to n must go through d.   
 
Defn: If d dominates n and d ≠ n, we say d 
strictly dominates n. 
 
Defn:  the dominance frontier of x is the set 
of all nodes w such that: 
1. x dominates a predecessor of w 
2. x does not strictly dominate w. 
 
 
 
 



Example (Fig 19.5) 
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5 dominates 5,6,7,8 



Example (Fig 19.5) 
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These are edges that 
cross from the frontier 
of 5’s dominator tree. 



Example (Fig 19.5) 
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This identifies nodes 
that satisfy the first 
condition:  nodes that 
have some predecessor 
dominated by 5. 



Example (Fig 19.5) 
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5 does not strictly  
dominate any of the 
targets of these edges. 



Computing Dominance Frontiers 
local[n]:  successors of n not strictly 
dominated by n. 
 
up[n]:  nodes in dominance frontier of n that 
are not strictly dominated by n’s immediate 
dominator. 
 
DF[n] = local[n] U { up[c] | c in children[n] } 
 
 
 



Algorithm 
computeDF[n] =  
  S := {} 
  for each y in succ[n]    (* compute local[n] *) 
    if immediate_dominator(y) ≠ n 
        S := S U {y} 
  for each child c of n in dominator tree 
    computeDF[c] 
    for each w in DF[c]  (* compute up[c] *) 
      if n does not dominate w or n = w 
        S := S U {w} 
  DF[n] := S 
 



A few notes 
•  Algorithm does work proportional to number of 

edges in control flow graph + size of the 
dominance frontiers. 
–  pathological cases can lead to quadratic behavior. 
–  in practice, linear 

•  All depends upon computing dominator tree. 
–  iterative dataflow algorithm is cubic in worst case. 
–  but Lengauer & Tarjan give an essentially linear time 

algorithm. 



Recall 
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!
x2 := x1!
y3 := y1!

y2 := x0+2!
x2 := x0!
y3 := y2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

Just realize the 
assignments 
corresponding to 
the phi nodes on 
the edges. 



CPS 
λn,m.!
let x0 = n!
let y0 = m in!
if x0 < y0 then  
f1(x0,y0) else f2(x0,y0) !

λx0,y0.!
let x1 := x0+1!
let y1 := y0-1!
f3(x1,y1)!

λx0,y0.!
let y2 := x0+2!
f3(x0,y2)!

λx2,y3.!
let z0 := x2 * y3!
return z0!



CPS less compact than SSA 
•  Can always encode SSA. 
•  But requires us to match up a block’s 

output variables to its successor’s input 
variables:  f(v1,…x…,vn) à λ x1,…x…,xn. 

•  It’s possible to avoid some of this 
threading, but not as much as in SSA. 
– Worst case is again quadratic in the size of 

the code. 
– CPS:  tree-based scope for variables 
– SSA:  graph-based scope for variables 



CPS more powerful than SSA 
•  On the other hand, CPS supports 

dynamic control flow graphs. 
– e.g., “goto x” where x is a variable, not a 

static label name. 
•  That makes it possible to encode strictly 

more than SSA can. 
–  return addresses (no need for special return 

instruction – just goto return address.) 
– exceptions, function calls, loops, etc. all turn 

into just “goto f(x1,…,xn)”. 
 



Core CPS language 
op ::= x | true | false | i | …!
!
v := op | λx1,…,xn.exp !
   | prim(op1,…,opn)!
!
exp ::= !
  op(op1,...,opn)!
| if cond(op1,op2) exp1 else exp2!
| let x = v in exp!
| letrec x1 = v1,…, xn = vn in exp!



CPS 

let x0 = n in!
let y0 = m in!
if x0 < y0 then  
f1(x0,y0) else f2(x0,y0) !

let f1 = λx0,y0.!
         let x1 := x0+1 in!
         let y1 := y0-1 in!
         f3(x1,y1)!

let f2 = λx0,y0.!
          let y2 := x0+2 in!
          f3(x0,y2)!

let f3 = λx2,y3.!
         let z0 := x2 * y3 in!
         return z0!



Dataflow SSA/CFG vs CPS 
•  To solve dataflow equations, for CFG or SSA, 

we iterate over the control flow graph. 

•  But for CPS, we don’t know what the graph is (in 
general) at compile time. 
–  our “successors” and “predecessors” depend upon 

which values flow into the variables wt jump to. 
–  To figure out which functions we might jump to, we 

need to do dataflow analysis… 
–  Oops! 



Simultaneous Solution:  CFA 
•  In general, we must simultaneously solve for (an 

approximation of) the dynamic control flow graph, and 
the set of values that a variable might take on.   

•  This is called control-flow analysis (CFA).   

•  The good news: if you solve this, then you don’t need 
lots of special cases in your dataflow analyses (e.g., for 
function calls/returns, dynamic method resolution, 
exceptions, threads, etc.) 

•  The bad news:  must use very coarse approximations to 
scale.   



Final Exam 
•  Final: April 19th, 10:30-12:30, Snell Library 045 
•  The final exam will be cumulative 
•  You may be tested on anything covered in readings or 

lectures, except for Typed Assembly Language.   
•  Assigned reading from Appel:  

–  Ch 1, 2, 3 (intro, lexing, parsing) 
–  Ch 13 (garbage collection) 
–  Ch 14 (OO languages) 
–  Ch 8 (basic blocks) 
–  Ch 17 (dataflow analysis) 
–  Ch 11 (register allocation) 
–  Ch 18 (loop optimizations) 
–  Ch 19 (SSA), skip 19.2 


