SETS

A set is a collection of distinct elements

S= {basketball, soccer} = sports that I like.

Integers:
$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Positive integers:
$$\mathbb{Z}^{+} = \{1, 2, 3, ...\}$$

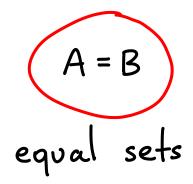
Rational numbers:
$$Q$$
 e.g., $\frac{1}{3}$, $\frac{5}{7}$, $\frac{13}{2}$, 8

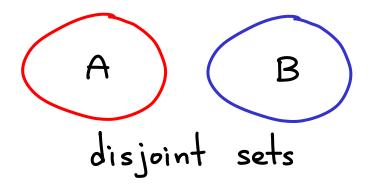
integer divided by integer

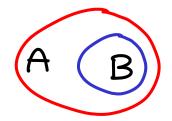
Irrational numbers e.g.,
$$\pi$$
, e, $\sqrt{2}$

Real numbers: R all rational & irrational

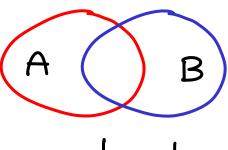
Venn diagrams







B subset of A



general picture

E: even natural numbers = {0,2,4,...}

E is a subset of $N: E \subseteq N$

E: even natural numbers = {0,2,4,...}

E is a subset of $N: E \subseteq N$

In fact it is a strict subset: E < N

E: even natural numbers = {0,2,4,...} Useful property:

E is a subset of $N: E \subseteq N$ number of subsets of $S=2^n$.

(all combinations of In fact it is a strict subset: E < N including or not including each element) E: even natural numbers = {0,2,4,...} Useful property:

E is a subset of N:

In fact it is a strict subset: E < N | including or not including

 $E \subseteq N$ number of subsets of $S = 2^n$.

(all combinations of each element)

Complement of a set $S = \overline{S}$ (contains all elements not in S)

E: even natural numbers = {0,2,4,...}

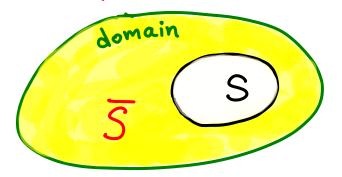
E is a subset of N:

In fact it is a strict subset: E C N

Useful property: If S has n elements, number of subsets of $S = 2^n$

(all combinations of including or not including each element)

Complement of a set $S = \overline{S}$ (contains all elements not in S)



This requires context: a known domain.

Essentially S is a subset of the domain.

E: even natural numbers = {0,2,4,...}

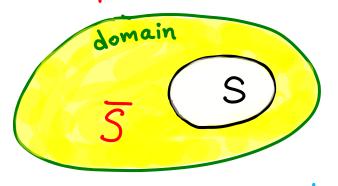
E is a subset of N: $E \subseteq N$

In fact it is a strict subset: E C N

Useful property: If S has n elements, number of subsets of $S = 2^n$.

(all combinations of including or not including each element)

Complement of a set $S = \overline{S}$ (contains all elements not in S)

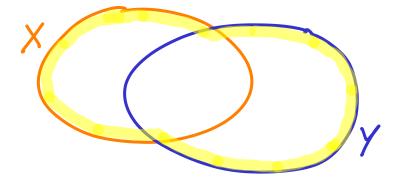


e.g., domain = ZT

This requires context: a known domain.

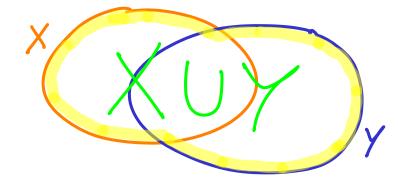
Essentially S is a subset of the domain.

 $S = powers of 2, \overline{S} = \{3,5,6,7,9,...\}$



$$X = \{1, 3, 5\}$$
 $Y = \{8, 5, 7\}$

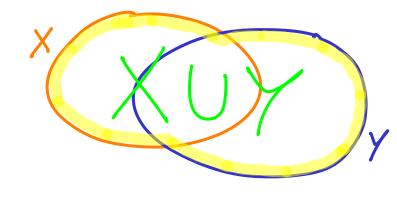
$$X \cup Y = \{1,8,3,\frac{5}{2},7\}$$



$$X = \{1,3,5\}$$
 $Y = \{8,5,7\}$

$$XUY = \{1,8,3,5,7\}$$

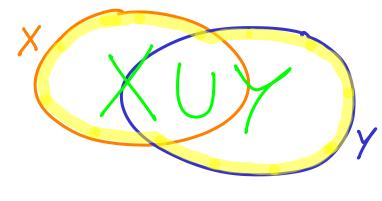
 $P \in XUY \text{ iff } P \in X \text{ OR } P \in Y$



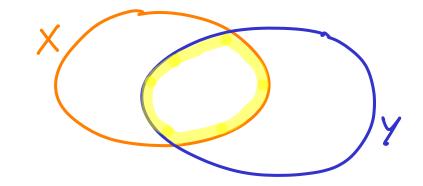
$$X = \{1, 3, 5\}$$
 $Y = \{8, 5, 7\}$

$$XUY = \{1,8,3,5,7\}$$

PEXUY iff PEX OR PEY



Intersection of sets: include common elements.

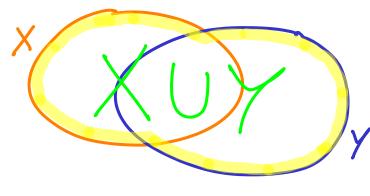


$$X = \{1, 3, 5\}$$

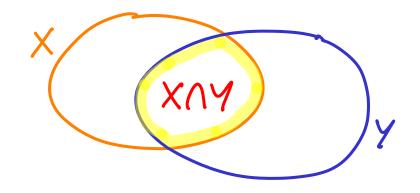
$$X = \{1, 3, 5\}$$
 $Y = \{8, 5, 7\}$

$$X \cup Y = \{1,8,3,5,7\}$$

PEXUY iff PEX OR PEY



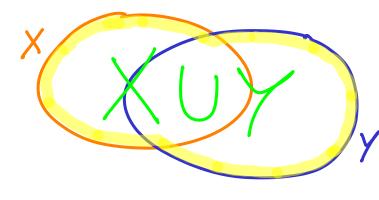
Intersection of sets: include common elements.



$$X = \{1, 3, 5\}$$
 $Y = \{8, 5, 7\}$

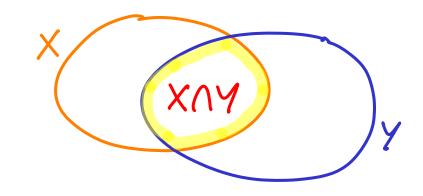
$$X \cup Y = \{1,8,3,5,7\}$$

PEXUY iff PEX OR PEY



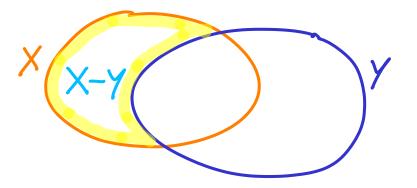
Intersection of sets: include common elements.

PEXMY iff PEX AND PEY



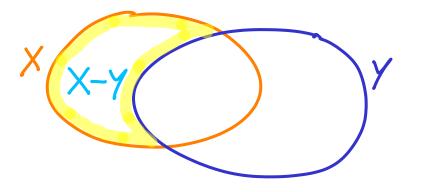
Set difference: X-Y pEX-

PEX-Y iff PEX AND PEY

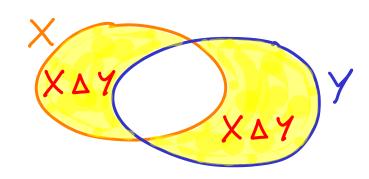


Set difference: X-Y

PEX-Y iff PEX AND PEY

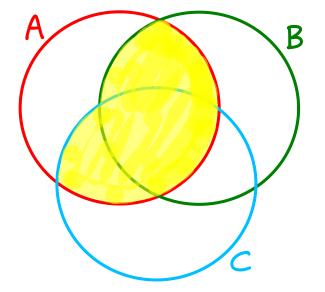


Symmetric difference: $X\Delta Y = (X-Y)U(Y-X)$



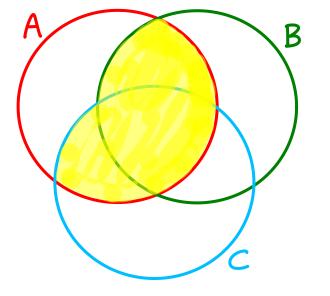
Distributive Laws for sets:

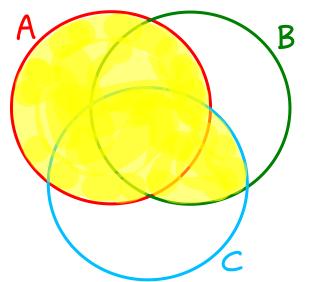
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$



Distributive Laws for sets:

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$





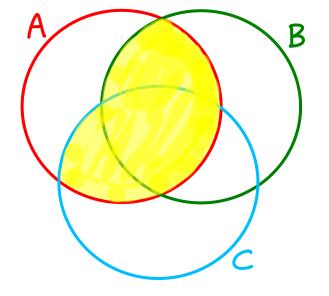
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

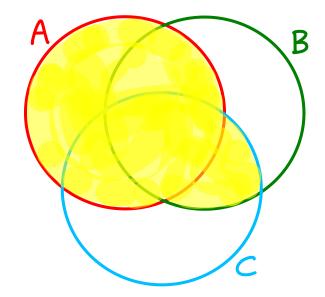
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Which seems like a simpler description?

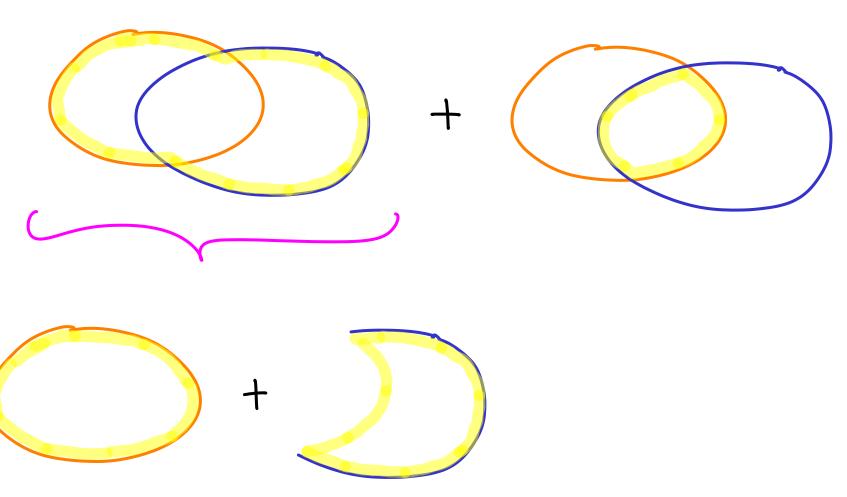
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Which seems like a simpler description?





$$|A| + |B| = |A \cup B| + |A \cap B|$$



see Inclusion-Exclusion Principle

Set builder notation: use when description of set isn't "basic"

Set builder notation: use when description of set isn't "basic" $\{5,14,19,23,28,32,37,41,46,50,55,64,69,73,78...\}$ S = ?

Set builder notation: use when description of set isn't "basic"

$$S = \{x \in \mathbb{N} \mid \text{sum of digits in } x \text{ is a multiple of } 5\}$$

implied: "all x" "such that" or "for which"

$$A = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 2 \mid x \right\}$$

$$A = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 2 \mid x \right\}$$

$$B = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 5 \mid x \right\}$$

$$|A \cup B| = ?$$

$$A = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 2 \mid x \right\}$$

$$B = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 5 \mid x \right\}$$

$$|A \cup B| = ?$$

$$|B| = 200$$

$$A = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 2 \mid x \right\}$$

$$B = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 5 \mid x \right\}$$

$$x \in A \cap B$$
 iff $10|x$

$$|B| = 200$$

$$A = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 2 \mid x \right\}$$

$$B = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 5 \mid x \right\}$$

$$|A \cup B| = ?$$

$$|B| = 200$$

$$x \in A \cap B$$
 iff $10|x$

$$x \in A \cap B$$
 iff $|A \cap B| = 100$

$$A = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 2 \mid x \right\}$$

$$B = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 5 \mid x \right\}$$

$$|A \cup B| = ?$$

$$|B| = 200$$

$$x \in A \cap B$$
 iff $|A \cap B| = 100$

$$|A| + |B| = |A \cup B| + |A \cap B|$$

$$A = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 2 \mid x \right\}$$

$$B = \left\{ x \in \mathbb{Z} \mid 1 \le x \le 1000 \text{ and } 5 \mid x \right\}$$

$$|A \cup B| = ?$$

$$|B| = 200$$

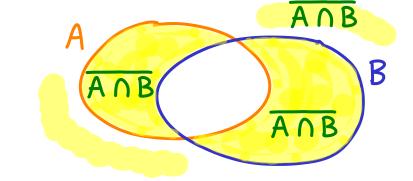
$$x \in A \cap B$$
 iff $10|x$

$$x \in A \cap B$$
 iff $|A \cap B| = 100$

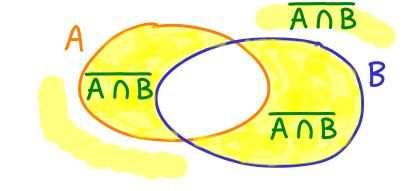
$$|A| + |B| = |A \cup B| + |A \cap B| \rightarrow |A \cup B| = 600$$

for propositions: $^{7}(A AND B) \leftrightarrow ^{7}A OR ^{7}B$ (see unit on "logic")

for sets:
$$\overline{A \cap B} = \overline{A \cup B}$$

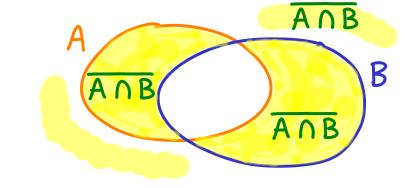


for sets:
$$\overline{A} \cap \overline{B} = \overline{A} \cup \overline{B}$$

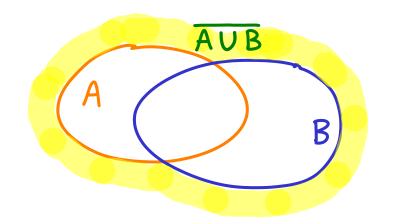


(see unit on "logic")

for sets:
$$\overline{A} \cap B = \overline{A} \cup \overline{B}$$



for sets:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$



SEQUENCES

Like sets, they are a collection of elements.

- 2 main differences:
 - repeats ok (a,b,a,b,a,a,b,b,...)
 - order matters $(a,b,c) \neq (c,b,a)$

For breakfast you can have one of: $B = \{egg, banana\}$ For lunch you can have one of: $L = \{soup, salad\}$ For dinner you can have one of: $D = \{egg, steak, cake\}$

 $B \times L \times D$

For breakfast you can have one of: $B = \{egg, banana\}$ For lunch you can have one of: $L = \{soup, salad\}$ For dinner you can have one of: $D = \{egg, steak, cake\}$

• • •

produces a set of sequences. $L = \{soup, salad\}$ each sequence: $D = \{egg, steak, cake\}$

BxLxD = {(egg, soup, egg), (egg, soup, steak), (egg, soup, cake), (egg, salad, egg), (egg, salad, steak), (egg, salad, cake), (banana, soup, egg), (banana, soup, steak), (banana, soup, cake), (banana, salad, egg), (banana, salad, steak), (banana, salad, cake)} Cartesian product of sets produces a set of sequences

If we take the product of n copies of S, we write
$$S^{n}$$
 e.g., $\{0,1\}^{3} = \{(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,0,1),(1,1,1)\}$

set of corners of a cube