#### Knowledge assumed in this document:

Algebraic definition of even, odd, irrational.

IF-THEN, IFF, ->, ->

E

prime & prime factor

every integer is a product of primes (see document on induction)

#### CONTRAPOSITIVE

if Greece wins the world cup, I will be happy (forever)

Tequivalent 1

if I'm not happy, Greece has not won the world cup

if you are a square, you have corners

Tequivalent

if you don't have corners, you are not a square 25



if A then B  $\iff$  if not B, then not A

CONTRAPOSITIVE:

if A then B = if not B, then not A

 $A \rightarrow B = 7B \rightarrow 7A$ 

What if 7A holds, but B is still true?

Greece hasn't won, but I'm still happy

This shape isn't a square, but it has corners

if A then B = if not B, then not A CONTRAPOSITIVE:  $7B \rightarrow 7A$  $A \rightarrow B$ What if 7A holds, but B is still true?

That's OK; no contradiction. It's not B IFF A

a b 
$$a \rightarrow b$$
  $7b$   $7a$   $(7b) \rightarrow (7a)$  valid?

T T  $\checkmark$  F F

T F  $\times$  T F

T Adort

F T  $\checkmark$  Contradict

T Adort

T A  $\checkmark$  T T  $\checkmark$  T T  $\checkmark$  T T  $\checkmark$ 

```
context so far: we know A -> B, so if we observe 7B
                                then we can conclude 7A
                PROOF BY CONTRAPOSITIVE
 We don't know how to prove A>B (easily), so we try to
   start by assuming 7B. If we conclude 7A, we are done.
           Prove: if 7x+9 is even, then x is odd (for x \in \mathbb{Z})
direct contrapositive

7x+9=2a /a:integer > 7x+9:even Suppose x is not odd: x = 2c
 x = 2a - 6x - 9
                                         7 \times +9 = 7.2c + 9
                                               = 14c + 8 + 1
 x = 2a - 6x - 10 + 1
                                               = 2 \cdot (7c+4)+1
   = 2(a-3x-5)+1
                                               = 2 - d + 1 (d = 7c + 4)
                                     7x+9=odd
 x = 2b+1 \ (odd) (b=a-3x-5)
```

#### PROOF BY CONTRAPOSITIVE

We don't know how to prove A>B (easily), so we try to start by assuming 7B. If we conclude 7A, we are done.

Prove: if  $x^2 - 6x + 5$  is even, then x is odd

$$x^2 - 6x + 5 = 2a$$
 direct

$$x^2 - 6x + (5 - 2a) = 0$$

$$x = \frac{6 \pm \sqrt{36 + 8\alpha - 20}}{2}$$

$$x = 3 \pm \sqrt{4 + 2a}$$

$$x = 2b + 1$$

#### PROOF BY CONTRAPOSITIVE

We don't know how to prove A>B (easily), so we try to start by assuming 7B. If we conclude 7A, we are done.

Prove: if 
$$x^2-6x+5$$
 is even, then x is odd

$$x^2 - 6x + 5 = 2a$$
 direct contrapositive  
Suppose x is not odd:  $x = 2c$   
 $x^2 - 6x + 5 = (2c)^2 - 6 \cdot 2c + 5$   
 $= 4c^2 - 12c + 5$   
 $= 4c^2 - 12c + 4 + 1$   
 $= 2 \cdot (2c^2 - 6c + 2) + 1$   
 $= 2 \cdot d + 1$   $(d = 2c^2 - 6c + 2)$   
 $= not$  even  $\Box$ 

#### PROOF BY CONTRAPOSITIVE

We don't know how to prove A>B (easily), so we try to start by assuming 7B. If we conclude 7A, we are done.

Prove: if x is irrational then Vx is irrational

contrapositive

Suppose 
$$\sqrt{x}$$
 is not irrational  $\sqrt{x} = \frac{a}{b}$   $a,b \in \mathbb{Z}$ 

$$x = \frac{a^2}{L^2}$$
: not irrational  $\square$ 

## PROOF BY CONTRADICTION a slight generalization of proof by contrapositive still proving if A then B for now

still proving if A then B for now

(a+b)·(a-b)  $\iff$  a²-b²

You can prove something directly (in one direction)

or work in both directions

instead of starting w/ 7B & leading to 7A (which contradicts A > 7B)

assume both A and B are true & arrive at some contradicting statement

#### PROOF BY CONTRADICTION

#### PROOF BY CONTRADICTION

For integers 
$$a \neq 0$$
 & b, there is only one number s.t.  $az + b = 0$ .  
(if  $ax+b=0$  then for  $y\neq x$ ,  $ay+b\neq 0$ )

Assume A  $\land \neg B$ :  $ax+b=0$  &  $ay+b=0$ 

$$ax+b=ay+b$$

$$ax=ay$$

$$x=y$$
contradicts

Prove: if A then B

Assume A 1 7B, get contradiction.

Does it work if we assume 7A 1 B and get a contradiction?

A -> B tells us nothing about what happens when 7A.

It would work if we were proving A -> B

- 1) what does the claim mean?
- 2) assume the contrary is true
- 3) use this to establish something 3) that you know is wrong

- 1) Z integers  $\{a,b\}$  s.t.  $\sqrt{2} = \frac{a}{b}$ 
  - 2)  $\exists$  integers  $\{a,b\}$  s.t.  $\sqrt{2} = \frac{a}{b}$
- 3) if (2) is true, then choose {a,b} w/ no common divisor

By (2), 
$$2 = \frac{a^2}{b^2} \Rightarrow 2b^2 = a^2 \Rightarrow a^2$$
: even (a: even)

$$(2x+1) \cdot (2x+1) = 4x^2 + 4x + 1$$
  
=  $2 \cdot (2x^2 + 2x) + 1$   
a: odd  $\rightarrow a^2 : odd$ 

- 2) assume the contrary is true
- 3) use this to establish something 3) that you know is wrong

- i) what does the claim mean? i)  $X = \frac{a}{b}$ 
  - $\exists$  integers  $\{a,b\}$  s.t.  $\sqrt{2} = \frac{a}{b}$
  - if (2) is true, then choose {a,b} w/ no common divisor

By (2), 
$$2 = \frac{a^2}{b^2} \Rightarrow 2b^2 = a^2 \Rightarrow a^2$$
: even  
(a: even)
$$4a = 2c \quad \{c: inf, \} \Rightarrow 2b^2 = 4c^2 \Rightarrow b: even$$

$$\sqrt{12} = \frac{a}{b} = \frac{2c}{2d}$$
 contradiction

4) conclude that (2) is false thus the initial claim is true

THERE ARE AN INFINITE NUMBER OF PRIMES (proof by contradiction)

· Assume that #primes is finite: P1, P2, ..., Pn · Let t=1+  $\Pi_{Pi}$  (i.e., 1+  $P_1 \times P_2 \times \cdots \times P_n$ )

· Notice t>pi for all i. So if t'is prime, contradiction.

• If t is not prime then I prime factor q≠t of t - if q≠Pi (for all i), contradiction.

- if q = Pj, we know q divides  $\prod_{i=1}^{n}$  Pi

but then it can't also divide  $1 + \prod_{i=1}^{n} P_i$  (contr.)

#### SMALLEST COUNTEREXAMPLE

Prove that the first n odd natural numbers sum to  $n^2$ .  $i = 1 \ 2 \ 3 \ 4 \ \cdots \ (n-1) \ n$ 

$$1 + 3 + 5 + 7 + \cdots + (2n-3) + (2n-1) = n^2$$

Sum: 1 4 9 16 ...

Suppose not. Then 
$$\sum_{i=1}^{n} 2i-1 \neq n^2$$
.

We saw the claim is true for small n.

If the claim is false, there must be some smallest number X (<n)

for which 
$$\sum_{i=1}^{\infty} 2i-1 \neq x^2$$

$$i=1$$
 2 3 4 ···· (n-1) n  
 $1+3+5+7+\cdots+(2n-3)+(2n-1)=n^2$ .  
if false, then  $\exists x$  for which it is false & x-1 for which it is true  $\downarrow$  in fact for all  $< x$ 

 $1+3+5+\cdots+(2x-3)$  =  $(x-1)^2$  = either this should have been  $\neq$ cor this should have been =  $1+3+5+\cdots+(2x-3)+(2x-1) \neq x^2$ ... which contradicts the  $(x-1)^2 + 2x-1 \neq x^2$ smallest counterexample assumption, i.e.,  $x^2-2x+1$  + 2x-1  $\neq x^2$ THERE IS NO (SMALLEST) COUNTEREXAMPLE & CLAIM IS TRUE

# SMALLEST COUNTEREXAMPLE recap well-ordering • be able to "count" & "order" instances of the claim principle" • prove the claim for smallest instance (case / example)

· assume the claim is false: then there is a smallest instance, Ei, for which it is false

(smallest counterexample)

· use E: & E:-, to get a contradiction (to the existence of any counterexample)

. this implies the claim is true for the next smallest instance, Ei-1.

Claim: For  $n \in \mathbb{Z}$ , n > 5,  $2^n > n^2$  (notice  $\begin{cases} 2^n & 1 & 2 & 3 & 4 & 5 \\ 2^n & 1 & 2 & 4 & 8 & 16 & 32 \end{cases}$ )

• Use smallest counterexample

· use smallest counterexample

• assume I smallest counterexample x.  $32^{x} \le x^{2}$  (x>5) (& for y>5, if y<x then  $2^{y} > y^{2}$ )
• focus on x-1:  $2^{x-1} > (x-1)^{2}$  (combine to get contradiction

focus on 
$$x-1: \frac{2^{x-1} > (x-1)^2}{contradiction}$$

counterexample

Smallest counterexample and not the smallest case

$$2^{x-1} > x^2 - 2x + 1 \quad \text{we will get a contradiction} \\
2^{x-1} \cdot 2 > 2x^2 - 4x + 2 \quad \text{contradiction} \\
2^x > 2x^2 - 4x + 2 \quad \text{true for } x > 4 \\

\hline
2^x > x^2 + (x^2 - 4x + 2) \quad \text{we have assumed } x > 5 \\
\hline
For  $n \in \mathbb{Z}$ ,  $n > 5$ ,  $2^n > n^2$$$

 $2^{\times} \leq x^2$ 

because x is a

 $2^{\times -1} > (\times -1)^2$ 

because x is the

FIBONACCI NUMBERS

for n > 2,  $F_n = F_{n-1} + F_{n-2}$ 

 $F_1 = 1$ 

Claim: for  $n \in \mathbb{Z}$ , n > 0,  $F_n \le 1.7^n$ suppose smallest counterexample is n = x $G_{x} > 1.7^{x}$ 

we want a contradiction, so most likely this will involve  $F_{x-1}$  it will be hard to use only  $F_x$  &  $F_{x-1}$  so why not use  $F_{x-2}$  also: assume  $x \ge 2$ 

G is F<sub>0</sub> ≤ 1.7°? yes. Is F<sub>1</sub> ≤ 1.7'? yes. OK!

$$F_o = F_1 = 1$$
 / for  $n > 2$ ,  $F_n = F_{n-1} + F_{n-2}$ 

Claim: for n∈Z, n>,0, Fn ≤ 1.7"

 $F_{\times} > 1.7^{\times}$  & we can safely assume  $(\times \gg 2)$  Fy  $\leq 1.7^{\circ}$  for  $y < \times$ smallest counterexample: Fx > 1.7x

we can now say: 
$$F_{x} = f_{x-1} + F_{x-2} \le 1.7^{x-1} + 1.7^{x-2}$$

$$= 1.7^{x-2} \cdot (1.7 + 1)$$

$$= 1.7^{x-2} \cdot 2.7$$

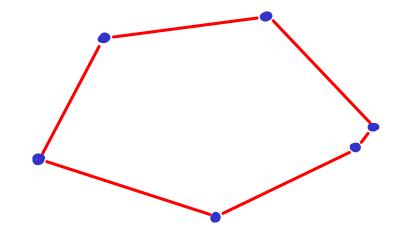
$$= 1.7^{x-2} \cdot 2.7$$

$$< 1.7^{x-2} \cdot (1.7)^{2} \quad [1.7]$$

 $< 1.7^{\times -2} \cdot (1.7)^2$   $\left[ 1.7^2 = 2.89 \right]$ 

6 points in convex position.

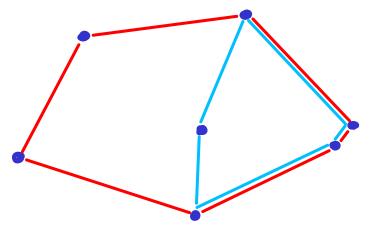
i.e., forming a hexagon



This is in 2D, aka "the plane".

x,y coordinates are real numbers, so our point set is in R2

Claim: in  $\mathbb{R}^2$ , given a set of points P  $\omega$ / no 3 on a line, if P has 6 points forming a hexagon then P has 5 points forming an empty pentagon.

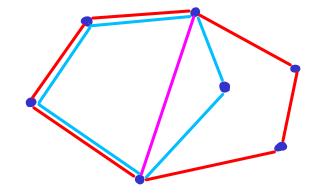


#### Stronger claim:

Every hexagon contains an empty pentagon

#### Trivial examples:

- if H is empty, DONE.
- -if H contains exactly 1 point,
  "split" H and then we are DONE.



- · We can order hexagons by # points inside.
- · If claim is false there must be a smallest counterexample

Proof by smallest counterexample

Choose a hexagon H containing min #pts, for which claim is false.

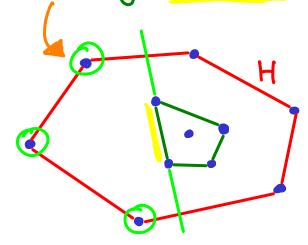
-Shown: if H contains &1 points, DONE -> so assume >2 pts inside.



#### Proof by smallest counterexample

Choose a hexagon H containing min #pts, for which claim is false. -Shown: if H contains &1 points, DONE -> so assume >2 pts inside.

- if any "extreme segment" of interior points "isolates" 3 points of H ...

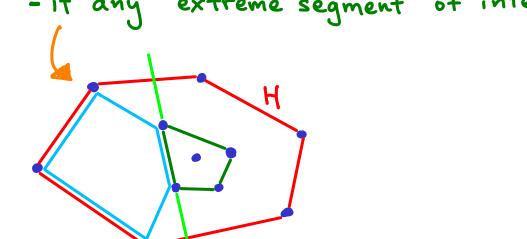


#### Proof by smallest counterexample

Choose a hexagon H containing min #pts, for which claim is false.

-Shown: if H contains &1 points, DONE -> so assume >2 pts inside.

-if any "extreme segment" of interior points "isolates" 3 points of H, DONE.



this wasn't a counterexample, CONTRADICTION

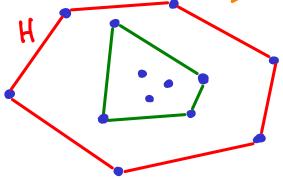
#### Proof by smallest counterexample

Choose a hexagon H containing min #pts, for which claim is false.

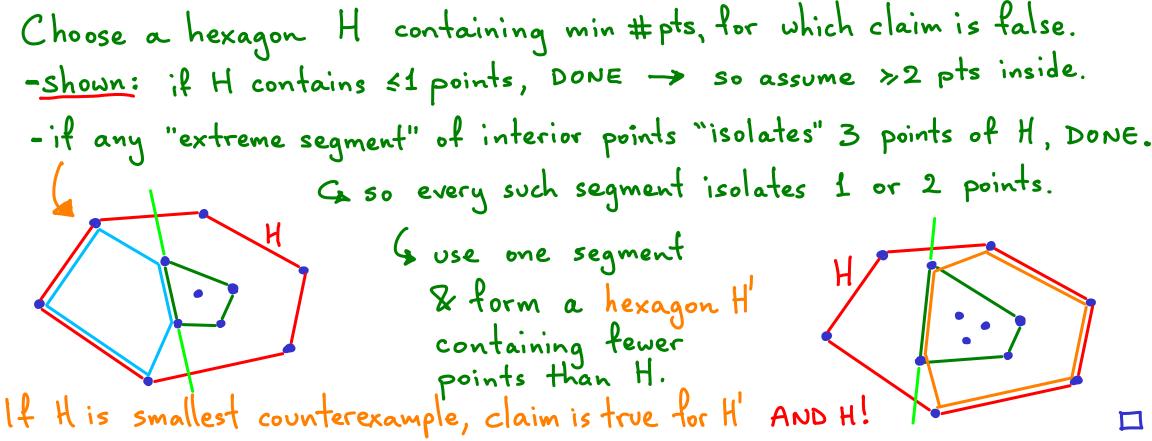
-Shown: if H contains <1 points, DONE -> so assume >2 pts inside.

- if any "extreme segment" of interior points "isolates" 3 points of H, DONE.

Ce so every such segment isolates 1 or 2 points. Sinvalid H



### Proof by smallest counterexample



## proof by INDUCTION

like proof by smallest counterexample,

(1) prove your claim for a base case (should be reasy)

like proof by smallest counterexample,

- (2) focus on two "neighboring" cases [call them n-1 & n]
- "unlike" proof by smallest counterexample, ... which proves (A 17B)=F
  which is the same
  - (3) show that if the claim is true for n-1 } A -> B

    then it is true for n