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Abstract—Enterprises today are facing an increasing number
of criminal threats ranging from financially motivated and
opportunistic malware to more advanced targeted attacks or-
ganized by nation-state actors. To protect against these threats,
enterprises deploy a number of perimeter defenses, including
traditional controls (anti-virus software, intrusion detection
systems, firewalls) and more advanced techniques (web proxies
or deep packet inspection products). Organizations collect and
store the log data generated by these security controls, but
this data is most of the time used for forensic investigation
once an attack has been discovered by an external mechanism.
In this paper, we describe a security log analytics framework
for proactive breach detection, which we have tested on three
applications. We summarize the algorithms and detection
results from our previous work ([13, 20, 21]). Compared to
other research in this area, our framework analyzes multiple
sources of security logs, performs large-scale analysis, and is
continuously refined from feedback given by security experts.
Our techniques have been successfully used in operational
setting in a large organization and are currently integrated
in a real-time behavior analytics product.

I. INTRODUCTION

The attack landscape faced by organizations today is
continuously evolving. A wide spectrum of threats rang-
ing from ‘crimeware” (opportunistic and financially moti-
vated malicious activities) to sophisticated cyber-espionage
and nation-sponsored campaigns (e.g., Advanced Persistent
Threats or APTs) threaten most organizations. Enterprises
deploy a variety of security defenses (firewalls, intrusion-
detection systems, anti-virus software, etc.) to protect their
perimeter against breaches. Nevertheless, well-funded at-
tackers develop custom tools which attempt to evade the
security protections in place. This results in an astonishing
number of successful breaches highly publicized by media
(e.g., Target [6], Sony [16], Anthem [7]) with devastating
financial consequences for their victims. Verizon DBIR [18]
reported that among 10,000 surveyed organizations in 2015
2,000 experienced a serious breach, and the total estimated
losses exceeded 400 million dollars.

The security defenses deployed by enterprises yield large
volumes of security logs that contain interesting and useful
information about activities in the network. Unfortunately,
most of the time these logs are consulted by security analysts
for forensic investigation, once an attack has been discov-
ered by some other mechanism. Even though attack-related

activities are recorded in the logs, APT campaigns often
remain undetected for long periods of time. To remediate this
situation, large organizations established Security Operations
Centers (SOC) or Incident Response Teams (IRT). Human
analysts in these teams are tasked to examine the variety
of alerts issued by security products, actively look for
new attacks and mitigate the identified threats. Experienced
security experts are sometimes successful in manually un-
veiling advanced attacks through log data analysis, but this
approach is obviously not scalable to the massive scale of
data collected in large organizations.

Extracting intelligence from security logs in an automated
manner seems a promising direction for preventing enter-
prise breaches, but nevertheless it is a daunting task and
introduces unforeseen challenges. In addition to the large
amount of data that needs to be processed and analyzed, logs
come from multiple vendors, are sometimes inconsistent
in their format, and there is usually a high semantic gap
between the information recorded in the logs and what is
required to detect a breach. Additionally, ground truth of real
intrusions is very limited in an enterprise setting due to the
large number of perimeter protections employed. It has been
well recognized in the community that designing machine
learning techniques with high accuracy in such settings with
limited ground truth is extremely challenging [15].

In this paper, we introduce an analytics framework that au-
tomatically analyzes log data from various sources with the
goal of proactively protecting enterprises against breaches.
We first build a normalization layer that pre-processes the
data, creates unique identifiers and synchronizes all times-
tamps to a common time zone. We design multiple profilers
that learn the legitimate user and host behavior across several
dimensions. At the same time, we build a feature extraction
layer that generates a large number of features correlated
with malicious behavior, based on extensive feedback from
security experts. The framework supports multiple statistical
analysis modules including supervised, unsupervised and
semi-supervised learning that address various use cases.
We discuss three applications we developed related to (1)
identifying outlying hosts in the global population through
clustering techniques; (2) predicting host infection based on
a number of indicators through a regression model; and (3)
detecting initial infection in a multi-stage campaign through



Figure 1. Typical configuration of enterprise networks.

applications of graph mining techniques.
Our techniques have been successfully deployed in pro-

duction at EMC and identified hundreds of new attacks,
overlooked by existing defenses. Based on feedback from
security experts from EMC’s Critical Incident Response
Center (CIRC) related to our system design and investigation
of produced incidents, our framework has been continuously
refined to account for new attack patterns and new sources
of data. We describe here the design of the analytics frame-
work, and summarize the algorithms and results from our
previous work [13, 20, 21].

II. BACKGROUND AND CHALLENGES

Enterprise networks. Figure 1 shows a common architec-
ture of enterprise networks deploying network-level defenses
(firewalls, web proxies, VPNs, etc.), as well as host-based
technologies (anti-virus software). Enterprises collect a wide
range of logs generated by these various devices, including
web proxies that log every outbound HTTP and HTTPs
connection, DHCP servers that log dynamic IP address
assignments, VPN servers that log remote connections to
the enterprise network, Windows domain controllers that log
authentication attempts within the corporate domain, and
antivirus software that logs the results of malware scans on
end hosts. These logs are typically stored in a commercial
security information and event management (SIEM) system.

Challenges. Building security analytics algorithms for
proactive breach detection using enterprise security logs is
challenging. Most previous works that have successfully
applied machine learning in security settings performed
experiments in controlled environments, in which finer-
grained data collection (system calls or process execution) is
enabled and detailed ground truth information on malicious
files or infected machines is available. In contrast, security
products in enterprises record events with less detail and
various formats, are configured by multiple vendors and

Figure 2. Volume of log data in a month.

are sometimes inconsistent in the information they record.
We elaborate on the specific challenges encountered in our
environment below:

Massive data. The security logs generated in large orga-
nizations are massive in scale. As an example, the enter-
prise of our study has 120K machines widely distributed
geographically and generates on average 2TB of security
logs daily from 24 different types of security devices. The
web proxy logs include on average 600K distinct external
destinations (domain names) and 10 million distinct URLs
daily, reaching 24TB in a month. Figure 2 shows the
volume of log data for the most prominent device types.
Timely detection of critical threats in our framework requires
efficient data-reduction algorithms and strategies to focus on
security-relevant information in the logs.

Inconsistencies and semantic gap. The logs yielded by
different security products are usually recorded with vendor-
specific formats, are sometimes inconsistent and experience
high semantic gaps between the information recorded in
the logs and what is needed for attack detection. As an
example, most web proxies record source IP addresses of
endpoint machines, but most organizations assign the IP
address space dynamically through DHCP. In these cases,
DHCP logs could be used to obtain the host name in a
proxy log, but correlating different log types in a distributed
organization is not immediate as collecting devices use
different configurations and time zones.

Limited ground-truth information. In contrast to experimen-
tal networks in which malware samples can be run for data
collection, in enterprise settings there is limited information
on malicious activities available for analysis. Perimeter-
deployed defenses block a variety of known threats (such
as variants of well-known crimeware attacks). As a con-
sequence, we need to work mostly with unlabeled data,
which is the most challenging scenario for designing highly
accurate machine learning algorithms. Moreover, manual
investigation needs to be performed for validating new



Figure 3. Analytics framework.

findings, and this imposes strict requirements on reducing
false positive rates.

Insights. Given all the above challenges and the diffi-
culty of making machine learning successful in operation
settings [15], how can we overcome these obstacles and
proactively detect enterprise breaches with high accuracy
and limited false positives? Here are our main insights:

- To address the massive data challenges, we profile
different aspects of user behavior over time and obtain a
baseline of their legitimate activity. For example, we profile
the legitimate network traffic to determine common, popular
destinations visited by users. Then we focus on unpopular
destinations (visited by a small number of users) and new
destinations (not visited before by any user), since they are
more suspicious.

- To solve the semantic gap issue, we normalize all times-
tamps to a common time zone and create unique identifiers
for hosts and users. This normalization enables the accurate
correlation of multiple sources of data.

- To overcome the machine-learning challenges, we use
the domain knowledge of security experts in the incident
response team at EMC (referred to as CIRC) for extracting
features highly correlated with malicious activities. We use a
number of generic features indicative of malicious activities,
but we are in the unique position to derive features specific
to an enterprise, where most users have common software
installations. For instance, most user-agent (UA) strings in
an enterprise have a large user base, and therefore unpopular
UAs are suspicious in this setting.

- To compensate for limited access to labeled data, we use
anomaly-detection techniques such as clustering and outlier
detection, as well as semi-supervised learning methods such
as graph inference and community detection. We present
applications of these techniques in the next section.

III. SYSTEM DESIGN

We developed a multi-layer analytics framework that
processes multiple sources of data and supports a variety of
machine-learning algorithms for proactive breach detection.
An overview of our architecture is given in Figure 3. We
would like to highlight that our system was deployed in
production at EMC, a largely distributed organization with
60,000 employees and identified many threats overlooked
by existing defenses. For a period of more than a year,
we generated prioritized alerts for the EMC CIRC and got
feedback from security analysts that helped us refine our
system. Additionally, some components of this framework
are currently being integrated in behavioral analytics mod-
ules of RSA’s products. We give first an overview of our
framework and then elaborate different components below.
Overview. As illustrated in Figure 3, our framework ana-
lyzes the log data produced from different products (e.g.,
web proxies, DHCP, VPN, domain controllers) stored in
a centralized SIEM repository managed by enterprise IT.
Our first task is to perform data pre-processing and nor-
malization, so that all hosts have unique identifiers and all
timestamps are under the same time zone. We then build a
suite of behavior profiling modules for obtaining a baseline
of legitimate behaviors across multiple dimensions. At the
same time, we build a feature extraction layer in which
we use internal data sources as well as external ones (e.g.,
domain WHOIS) to extract features highly correlated with
malicious activity. Feedback from security experts in CIRC
has been extensively used for the feature extraction layer.
We implement different statistical analysis modules, based
on supervised, semi-supervised and unsupervised learning to
support different applications. Each module generates a list
of prioritized alerts, enriched with contextual information,
that are investigated by human analysts.
Data pre-processing. In a globally distributed enterprise,
log-collection devices record timestamps differently accord-
ing to their configuration. They could use local time zones,
UTC, or some other representations. As a result, the associ-
ated logs could bear inconsistent timestamps and have to be
normalized before being used in analytics applications. We
found most collection devices not reporting their timezones,
therefore we normalize all timestamps into UTC through the
following approach. We inspect the timestamps of the logs
tagged by the local device and the timestamps of same logs
tagged by the central SIEM (which is configured in UTC
timezone). Then, we compute the difference between these
two set of timestamps and use the value representing the
majority of logs as the timezone difference to UTC. This
process is repeated regularly to account for daylight savings
and other geographical factors. Finally, all logs are corrected
using the inferred timezone difference. More details of this
approach can be found in [21].

As described in Section II, source IP addresses commonly



logged by network appliances have to be converted to host
names. We tackle this problem by leveraging complimentary
data sources. Particularly, we first analyze the logs from
DHCP and VPN servers to create IP-to-host bindings for
hosts with dynamic IP addresses. Next, we create bindings
for hosts using static IP addresses. We retrieve all source
IPs seen in enterprise (denoted by A) and the dynamic IPs
recorded in DHCP and VPN logs (denoted by D). The static
IP addresses can be derived by computing the set difference
S = A−D and we perform reverse DNS lookup using S to
create the bindings for static hosts. The host name associated
with each log entry can be identified by leveraging these
bindings (details also elaborated in [21]).

Legitimate activity profiling. We implement a number of
behavioral profiles that capture different aspects of legitimate
activities on the network. The profiles are built from histor-
ical data (the organization keeps three months of historical
data at any time), and then continuously updated to account
for concept drift. Some examples of profiles we implemented
are: the external destinations (i.e., domain names) visited by
users, the user-agent strings employed by various enterprise
hosts, applications installed on end hosts, users’ typical
working hours, users’ login patterns to internal machines
and servers and users’ VPN activities. We design compact
data structures for these profiles (e.g., aggregating domains
and timestamps per host) to allow loading them into memory
for fast processing.

Analytics applications. We build multiple analytics applica-
tions for proactive breach detection. We provide more details
on three of them that leverage different machine-learning
algorithms. First, we designed Beehive, a system that
detects outlying hosts with widely distinguishing behavior
than the majority of host population. This application is
completely unsupervised, and we use Principal Component
Analysis (PCA) for dimensionality reduction and a clustering
algorithm applied to network-traffic features, to successfully
detect a number of crimeware activities and policy violations
(see Section IV-A). Second, we build a predictive model
that leverages a variety of features from network traffic,
user demographic information and VPN activity, to predict
when a host machine becomes infected by malware. This
system uses labeled data from anti-virus systems deployed
on enterprise machines, and is based on a supervised logistic
regression model (see Section IV-B). Lastly, we address the
problem of detecting communication with malicious destina-
tions during the malware delivery or command-and-control
(C&C) stages in a multi-stage attack. We use techniques
from graph theory based on belief propagation, in combi-
nation with regression models, to detect small communities
of infected hosts and malicious destinations. Our techniques
successfully addressed the LANL APT infection discovery
using DNS data challenge [3] and identified hundreds of
unknown enterprise infections (see Section IV-C). In current

work, we are developing other algorithms for detecting
different stages of an attack lifecycle, e.g., C&C commu-
nication, lateral movement and data exfiltration, and plan to
get a comprehensive view on an entire attack campaign.
Enrichment and reporting. In all our applications, we
prioritize the detected incidents and enrich the alerts with
contextual information when presenting them to CIRC an-
alysts. Based on experts’ feedback, we add information
from external data sources (e.g., WHOIS, ASN), other
internal data sources (e.g., organization chart or endpoint
reports), and AV/Blacklists labels (e.g., trojan, adware). This
information is helpful to analysts to perform quick incident
triage as the number of alerts greatly exceeds the capabilities
of human analysts. In addition, our system takes the results
of investigation from analysts into account to tune the system
parameters, include new features and experiment with new
learning methods.

IV. ANALYTICS APPLICATIONS

In this section, we summarize the algorithms and results
from three analytics applications for identifying hosts ex-
hibiting outlying behaviors, predicting malware encounters
on hosts and detecting malicious external communications
during the delivery and C&C communication phases in a
multi-stage attack.

A. Outlying host detection

For generating reports of anomalous host behavior relative
to the entire host population, we design a system called
Beehive [21], based on unsupervised learning methods.
Beehive is the first system we are aware of that extracts
meaningful intelligence from different sources of security
log data in an enterprise setting and identifies unknown
malware infection and policy violations. Our main insight is
that hosts in an enterprise network are constrained by com-
pany policies and employee job functions, and exhibit more
homogeneity than those on the open Internet. Beehive
focuses on monitoring the behavior of dedicated hosts,
which are machines utilized by a single user (and does not
consider machines or servers that are shared among users –
since those tend to experience different behavior).

For identifying hosts with anomalous activity, we ex-
tracted 15 features from four categories from web proxy
logs as follows:

1) Destination-based features. We are interested in iden-
tifying hosts that communicate with new external des-
tinations that have not been previously contacted by
other hosts in the enterprise. Such obscure destinations
have higher chance of being controlled by attackers
(e.g., participate in malware delivery infrastructures
or act as C&C centers) than the popular, common
destinations visited on a regular basis. To identify
the new destinations, we build a history (or profile)
of external destinations contacted by internal hosts



over time. We had to employ techniques such as
custom whitelisting and domain folding to keep the
history size manageable. We are also interested in
unpopular external destinations that are raw IP ad-
dresses. These might indicate suspicious activity, as
legitimate services can usually be reached by their
domain names. We thus include features related to
counts on number of new destinations contacted (with
and without the web referer field), and number and
fraction of unpopular raw IP addresses visited by hosts
daily.

2) Host-based features. User-agent (UA) strings in HTTP
traffic are usually customized by applications making
a web request to report the application configuration.
In an enterprise with most machines having common
software base, we expect that most UAs are employed
by a large number of machines. We maintain a profile
of UAs observed in network traffic and the hosts using
them over time, and are interested in new user-agent
strings relative to the global history. We accommodate
UA modifications resulting from software updates by
using the edit distance to account for similar UAs. We
count the number of new UAs (according to certain
threshold in the edit distance) for each host.

3) Policy-based features. Strict network policies are usu-
ally enforced in enterprise networks by web proxies
that monitor and block suspicious connections at the
enterprise border. Sites with low reputation or those
that are not business-related are either blocked or, in
some cases, require explicit consent by employees to
visit them. Hosts visiting such sites on a regular basis
are suspicious, and therefore we count the number of
blocked and consented domains and connections per
host.

4) Traffic-based features. Spikes in traffic volume or
number of contacted domains in a small time window
could indicate automated services (streaming, chat-
ting) or malware (e.g., bot client searching for valid
C&C centers or scanning the network). To account for
these, we build profiles of legitimate traffic volumes
and include the number of connections (or domain)
spikes and bursts (prolonged intervals of intense ac-
tivities) as features in our system.

We represent each internal host with a 15-dimensional
feature vector collected on a daily basis. Since some of
the features exhibit correlations, we first apply PCA for
dimensionality reduction. Subsequently, we use a variant
of k-means clustering that does not require the number of
clusters to be specified in advance. We ran Beehive daily
for a two-week period in 2013 on the dedicated hosts (27-
35K were active on weekdays and 9-10K on weekends). We
found the vast majority of hosts fall into one large cluster and
the remaining clusters usually include hosts with abnormal

behaviors (i.e., outlying hosts). Beehive generated 784
incidents in two weeks and, in absence of ground truth,
we performed manual investigation in collaboration with
security experts in CIRC. Among the detected incidents,
we classified 25.25% as malware-related, 39.41% as policy
violations and 35.33% as related to unrecognized software or
services. In addition, only 1.02% of incidents were detected
by other security tools. The results suggest that our approach
could complement existing defenses in enterprise settings.

B. Predicting malware encounters

While all enterprise hosts are exposed to malware threats,
the risk of encountering malware are varying widely across
hosts. By leveraging security logs generated by anti-virus
software deployed on end hosts as ground truth, we per-
formed an extensive study to measure the impact of different
factors to the risk of host infection [20]. We considered fac-
tors from three categories (user demographics, VPN activity
and web usage) and present a number of interesting findings.
For instance, we discovered that malware encounters happen
more frequently outside the enterprise perimeter, malware
encounters are highly correlated with geographical region
of the user, and the most prominent infection vector in that
enterprise is the USB drive.

These findings inspired us to build a predictive model
to infer the risk of an employee’s machine encountering
malware proactively based on these features. The results
from the model provide valuable insights to CIRC analysts
and can be used to prioritize investigation on machines more
prone to infection and remediate malware infections in early
stages. Towards this end, we extracted three categories of
features from organization chart, VPN logs and web proxy
logs:

1) Demographic features. We take into account user’s
gender (inferred from employee’s first name), country
of employee’s office, level in management hierarchy,
and technical level of employee’s job type (e.g.,
engineer, architect or manager). We found that all
these features have significant correlation with mal-
ware encounters, but country is the most predictive
demographic feature.

2) VPN activity features. Since 77% of malware en-
counters happen outside the corporate network, where
we do not have much visibility, we considered VPN
usage as an approximate metric for activities off-
network. In particular, we consider the number of
VPN connections, total duration, sent and received
bytes and number of distinct external IP addresses
initiating VPN connections. All these features, except
received bytes, exhibit high correlation with malware
encounters.

3) Web activity features. Web-based malware is a preva-
lent threat, and therefore web activity features are of



interest in our model. Our intuition is that employ-
ees visiting high-risk sites more frequently or having
higher Internet exposure are more likely to encounter
malware. To capture this, we investigate features re-
lated to categories of web sites visited, aggregate
volumes of web traffic, and connections to blocked
or low-reputation sites. The web proxies deployed
by the enterprise automatically tag visited web sites
into different categories (e.g., business, entertainment,
social networks, etc.). We found several of these (file
transfer, social networks, chat) having high correlation
with malware encounters.

As the majority of features are categorical, we employed a
two-stage feature selection process. First, we use a standard
binary representation of categorical features and build a
logistic regression model separately for each category with
the goal of finding the binary features correlated with
malware encounters. Second, we combine the statistically
significant features selected in the first stage to build the
final model. Our final model uses a total of 20 features from
all categories.

We collected four months of data in 2013 and used
the first two months for training the risk model and the
remaining for testing. We ranked the machines in testing set
by the predicted risk score and evaluated against the ground
truth. It turns out that the machines ranked highly by the
predictive model have a much higher rate of encountering
malware: 51% of the top 1000 machines in the testing set
encountered malware, which is three times higher than the
overall malware encounter rate (15.31%). This demonstrates
that our model could prioritize effectively the set of hosts at
high risk of infection, and can be used by the enterprise to
take proactive remediation measures.

C. Detecting malicious communication

Modern advanced malware and targeted attacks span
multiple stages in the attack lifecycle [9]. APT campaigns
tend to advance very slowly to evade detection and are able
to persist in victim environments for years without detection.
During the malware delivery stage, a victim machine gets
malicious payload through a number of infection vectors,
such as social engineering, USB drives or web-based attacks.
Subsequently, backdoors are typically installed on the victim
machine to initiate regular communication with a command-
and-control (C&C) center and allow attackers remote ac-
cess to the enterprise network (as inbound connections are
blocked by enterprise policies). Once attackers are inside the
victim network, they start to propagate to other machines,
elevate their privileges and reach the target of interest to
perform data exfiltration or reach their objectives.

We have developed semi-supervised learning methods to
detect unusual communication patterns during the automated
early stages of these campaigns [13]. Our main insight is that

typical infection patterns are quite similar across many attack
vectors and can be distinguished from legitimate connec-
tions. For instance, attackers might use different domains or
IP addresses for communicating with victim machines, but
they typically exhibit similarities in the IP address space,
hosts that contact them, web connections and certain timing
patterns. These domains are most of the time uncommon
destinations, yielding low volumes of traffic from enterprise
hosts.

We aim to detect malicious external communications by
applying a graph inference technique called belief propa-
gation, a message-passing algorithm designed to infer the
label of a node (in our case, probability of the node being
malicious), based on prior knowledge of the node state
and information of its neighbors. We construct a bipartite
communication graph that models the relationships between
internal hosts and the external destinations they visit. Start-
ing from a set of seed domains (known malicious domains),
we add to the graph all hosts visiting them, and then compute
a risk score for each unpopular domain visited by those
hosts. To keep the size of our graphs small, we only add
to the graph domains with score above a certain threshold
(those are at higher risk). We iterate this process until the
algorithm converges or a maximum number of iterations
is reached. For computing each domain’s risk score, we
use a regression model trained on data labeled with the
VirusTotal cloud anti-virus engine. The model is built with
features related to the domain’s connectivity, web connection
information, registration data and timing patterns.

To seed the belief propagation algorithm we use either
known malicious domains or known infected hosts. We also
built a detector for C&C communication in [12, 13] that is
based on another regression model (trained on a month of
labeled data using VirusTotal), and can be used to initialize
belief propagation. Alternatively, we used known malicious
domains from different commercial blacklists, or known
infected hosts already investigated by the CIRC to initialize
the algorithm. The features leveraged by our two regression
models are:

1) Domain connectivity. This measures the number of
hosts contacting the domain. Intuitively, unpopular
domains are more likely to be involved in malicious
activities.

2) Web connection features. Connections without web
referer might denote automated communication (as
expected in the C&C stage), thus we consider the
fraction of hosts contacting a domain without the web
referer field. We also look for hosts using unpopular
user-agent (UA) strings (those observed in a small
number of hosts). To determine the UA popularity, we
leverage the UA profiler we built.

3) Registration data features. Sites under attacker’s con-
trol tend to use more recently registered domains
than legitimate ones, and these domains have shorter



Figure 4. An example of two communities of domains related to two
campaigns in the bipartite communication graph.

validity period. We extract two features from public
WHOIS data: domain age (days since registration) and
domain validity (days until registration expires).

Our results on two large-scale datasets demonstrate that
belief propagation is capable of revealing the full span of
a malicious campaign. We participated in the LANL APT
infection discovery discovery challenge [3] and successfully
identified the simulated attacks in the 1.15TB anonymized
DNS log dataset released by LANL (with accuracy of
98.33% and false positive rate of 3.72 · 10−5%). We also
scaled our method to process 38TB of enterprise proxy logs
and discovered in one month 265 malicious connections
involving 945 hosts. For validation, we used VirusTotal scan-
ning and manual investigation by security experts, and show
our results in Figure 5. We confirmed 132 domains (49.81%)
malicious with VirusTotal (denoted known malicious), but
these were new findings for the enterprise. Interestingly,
70 domains (26.4%) were confirmed through manual in-
vestigation (denoted new malicious). These are entirely new
malicious domains not known to the community. In a month-
long timeframe, we flagged 63 domains as false positives
(bringing our false positive rate to 3.41 · 10−4%%). This
results in 2 false positives on average per day, which is very
manageable for the CIRC. Nevertheless, our system can be
configured with different risk score thresholds to tune the
number of alerts.

V. RELATED WORK

A number of research groups also looked into web proxy
log analysis in enterprise networks and developed applica-
tions aiming to uncover malicious activities. Manadhata et

Figure 5. Detection results of belief propagation on one month of data.

al. [8] applied belief propagation on the host-domain bipar-
tite graph built using enterprise log data to detect malicious
domains. Similarly, Carter et al. [2] modeled the domain-to-
IP relations in a bipartite graph and applied a method called
Probabilistic Threat Propagation to find malicious domains
that share the same IP infrastructure. We design a variant
of belief propagation that builds the communication graph
incrementally starting from known malicious domains or
known infected hosts, and can scale to the volume of logs
collected by a large enterprise.

Malware downloads can be detected as well from ana-
lyzing network traffic, as suggested by previous research.
Invernizzi et al. [5] developed a system called Nazca to iden-
tify malware distribution network from HTTP logs collected
by Internet Service Providers (ISPs). Vadrevu et al. [17]
developed AMICO which reconstructs the relations between
downloaders and files from the academic network traffic and
applied a provenance classifier to detect malware downloads.
Nelms et al. [10] built WebWitness, a system inspecting
the download path recovered from the academic network
traffic and identifies the paths leading to drive-by-download
attacks. Following this work, the authors developed a detec-
tion system targeting social-engineering download attacks
and measured the characteristics of such attacks [11]. Since
malware authors continuously produce new malware vari-
ants, the rules learnt from training samples could be easily
evaded. A recent work by Bartos et al. [1] showed that
network logs could be converted into representations robust
against common changes of malware behaviors.

The closest to our framework is a system developed at
IBM Research processing different enterprise data sources,
such as logs from web proxies, DNS servers, firewall and
VPN servers. Multiple applications have been developed on
top of the framework. For instance, Kaleido [19] attributes
network traffic to users and MUSE [4] scores the security
risk of entities in enterprise network. They also proposed
an analysis engine named FCCE to correlate data with



low latency [14]. The focus of their work was mainly to
reduce latency for forensic analysis, while our work aims to
automatically detect unknown malicious activities with high
accuracy and low false positive rates. Moreover, we worked
closely with domain experts (from EMC CIRC) for refining
our methods and the reports provided by our framework have
been extensively used in operational settings. Some compo-
nents are currently being integrated into RSA’s products.

VI. CONCLUSIONS

We present a security log analytics framework to proac-
tively detect enterprise breaches and generate prioritized
alerts for investigation by human analysts. Our framework
is able to process massive and heterogeneous datasets from
different collection devices efficiently and pinpoint various
malicious activities with high accuracy. We summarized the
algorithms and results from our previous work for detecting
outlying hosts, predicting malware encounters and identify-
ing malicious external communication. Our techniques have
been successfully deployed in production at EMC for more
than a year and are currently integrated into RSA’s products.

Yet, there are many remaining challenges in designing
effective security analytics solutions. Detecting stealthy,
persistent attacks is very difficult given the low volume of
traffic and limited availability of ground truth. Currently, it
is impossible to compare algorithms developed by different
groups, and understand their tradeoffs and limitations. We
believe that creating standardized datasets in the security
community (similarly to the machine learning community)
would be beneficial and contribute to more advances in
research in this area. Finally, building machine learning
models resilient against advanced attackers is a perpetual
challenge to our community.
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