AI in Cybersecurity: Applications, Open Problems, and Future Directions

#### Alina Oprea

Associate Professor Cybersecurity and Privacy Institute Northeastern University

> ACSAC December 6 2018

## Al is Everywhere





| Google                            |                            |        |                            |            |
|-----------------------------------|----------------------------|--------|----------------------------|------------|
| Translate                         | From: English - detected 👻 | €⇒ То: | Chinese (Simplified) - Tra | nslate     |
| English Spanish                   | French English - detected  |        | Chinese (Simplified) Engli | sh Spanish |
| The blue fox jumps over the hedge |                            | ×      | 蓝狐跨越对冲                     |            |
|                                   |                            | •      | ☆ 🔳                        |            |
|                                   |                            |        | Lán hú kuàyuè duìchōng     |            |

| Amazon.com: Why is this recommended for you? |                                                                                                                                                                                                       | er you? ⊯®                                                     |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| amazo                                        | n.com                                                                                                                                                                                                 | Help   Close window                                            |
| Recommen                                     | nded for You                                                                                                                                                                                          |                                                                |
|                                              | Semantics, Second Edition (Modern<br>Linguistics)<br>by Kate Kearns (May 15, 2011)<br>In Stock<br>List Price: \$40.00<br>Price: \$37.31<br>68 used & new from \$14.00<br>Add to Cart Add to Wish List | Rate this item<br>(2) **********<br>I own it<br>Not interested |
| Because y                                    | ou purchased                                                                                                                                                                                          |                                                                |
| MIANNS L                                     | Meaning: A Slim Guide to Semantics (Oxford<br>.inguistics) (Paperback)<br>by Paul Elbourne (Author)                                                                                                   | E 好好好好<br>This was a gift<br>Don't use for<br>recommendations  |
|                                              |                                                                                                                                                                                                       | Help   Close window                                            |
|                                              | <b>† <b>N</b>AMA</b>                                                                                                                                                                                  | Patients                                                       |
|                                              | , <b>⇔_%</b>                                                                                                                                                                                          | Biomarker<br>Diagnostics                                       |
|                                              | <b>L</b> + 2                                                                                                                                                                                          | Thorapy                                                        |
|                                              |                                                                                                                                                                                                       |                                                                |

## **Connected Cars**



- Sensors for data collection
- Assist drivers in making decisions to increase safety



## **Personalized Medicine**



- Treatment adjusted to individual patients
- Predictive models using a variety of features
- Better outcome and reduced cost







> 100 years





> 50 years



1940





Unimate Robot 1961

Sony Dream 2001

## Fast Forward in the Near Future





Al Transportation in Cities of the Future (10-20 years)

## Fast Forward in the Near Future





Al Robots in Medicine of the Future (10-20 years)



# What will happen in 100 years?



## Implications for Cyber Security

- AI has potential in security applications
  - Complement traditional defenses (crypto, multi-factor authentication, trusted hardware)
  - Design intelligent and adaptive defense algorithms
- ...But AI becomes a target of attack
  - Deep Neural Networks are not resilient to adversarial manipulations
    - [Szegedy et al. 13]: "Intriguing properties of neural networks"
  - Many critical real-world applications are vulnerable
  - New adversarially-resilient algorithms are needed!





## Al in Cybersecurity

## **Can Al Improve Security?**



## Industry



## **AI-Enabled Defenses**

- Spam and phishing detection – [Castillo et al. 07], [Ma et al. 09]
- Detect compromised accounts in social networks
  - [Egele et al. 13], [Thomas et al. 14], [Cao et al. 14]
- Malicious web sites and web connections

   [Bilge et al. 11], [Antonakakis et al. 12], [Hao et al. 17]
- Predict security events
  - [Liu et al. 15], [Shen et al. 18]



Sign in to Gmail with







#### **Security Breaches**



- Exfiltration of sensitive information
- Loss of intellectual property
- Financial losses

Source: Verizon DBIR

#### Defenses in Enterprise Networks



- Security controls deployed for network and host protection
- Security logs mostly used for forensic investigation
- How can we detect and predict breaches using security logs?

## Challenges of AI in Security

- Al is successful in many domains
  - Product recommendation, NLP, speech recognition
- What is different in cyber security?
  - 1. High cost of errors (both false positives and false negatives)
  - 2. Variability of user activity under normal conditions
  - 3. Interpretability of results to facilitate manual investigation
  - 4. Resilience against advanced adversaries

Limited success of machine learning for security in operational environments [Sommer and Paxson 2010]

## **RSA Analytics Framework**



## Key Ideas

- Design ML modules for specific attack patterns
  - E.g., C&C, lateral movement, data exfiltration
  - Maximize precision and reduce false positive rates



- Combine multiple models for increased recall of malicious activities
- Continuous interaction with EMC CIRC over several years
- Leverage ground truth from existing security products and previous incidents investigated by CIRC
- Interpretability of results

#### Recommendations by [Sommer and Paxson 2010]

## MADE

#### Goals

 Identify HTTP Command-and-Control (C&C) communication

#### Approach

- Use 10 categories of generic and enterprise features (89 total features)
- Enterprise-specific profiles of domains and user-agent strings
- Supervised learning (classification)
- Output
  - Prioritized list of external C&C domains



A. Oprea, Z. Li, R. Norris, K. Bowers. *MADE: Security Analytics for Enterprise Threat Detection*. ACSAC 2018.

## Multi-Stage Attacks

#### Goals

 Detect all domains and hosts involved in multi-stage campaigns

#### Approach

- Semi-supervised learning
- Construct bipartite communication graph
- Label C&C domains as seeds
- Propagate risk with belief propagation

#### Output

- Prioritized list of malicious domains
- Compromised hosts



A. Oprea, Z. Li, T.-F. Yen, S. Chin, S. Alrwais. *Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data*. DSN 2015.

## **Deployment Statistics**

#### **Command-and-Control (C&C)**

- Dataset
  - 20 TB
- Precision (confirmed malicious)
  - 97%
- False positive rates:
  - 6x10<sup>-3</sup>%
- New detections in one month
  - 18 domains

#### **Multi-Stage Attacks**

- Dataset
  - 38 TB
- Precision (confirmed malicious)
  - 85%
- False positive rates:
  - 8.58x10<sup>-4</sup> %
- New detections in one month
  - 152 domains
  - 945 compromised hosts

#### **Open Problems: Interpretable Models for Security**



- Why does the ML model predict something as attack?
- What type of attack it is?
- Is it similar to known attacks?
- Is it a new attack/zero-day?
- What is the root cause?



## **Open Problems: Measurable Security**

- What are the right metrics in cyber security?
- How do we compare different models?
- What are some good benchmarks?





accuracy = 
$$\frac{TP + TN}{P + N}$$
  
precision =  $\frac{TP}{TP + FP}$   
recall =  $\frac{TP}{TP + FN}$ 



#### **Open Problem: Intelligent Automation**





## Implications for Cyber Security

- AI has potential in security applications
  - Complement traditional defenses (crypto, multi-factor authentication, trusted hardware)
  - Design intelligent and adaptive defense algorithms
- ...But AI becomes a target of attack
  - Deep Neural Networks are not resilient to adversarial manipulations
    - [Szegedy et al. 13]: "Intriguing properties of neural networks"
  - Many critical real-world applications are vulnerable
  - New adversarially-resilient algorithms are needed!







## Security of Al

## Can AI Be Secured?



#### Adversarial Machine Learning: Taxonomy

#### Attacker's Objective

|          | <b>Targeted</b><br>Target small set of<br>points | Availability<br>Target majority of<br>points | <b>Privacy</b><br>Learn sensitive<br>information |
|----------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|
| Training | Targeted Poisoning<br>Backdoor<br>Trojan Attacks | Poisoning<br>Availability                    | -                                                |
| Testing  | Evasion Attacks<br>Adversarial Examples          | -                                            | Model Extraction<br>Model Inversion              |

#### Adversarial Machine Learning: Taxonomy

#### Attacker's Objective

|          | <b>Targeted</b><br>Target small set of<br>points | Availability<br>Target majority of<br>points | <b>Privacy</b><br>Learn sensitive<br>information |
|----------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|
| Training | Targeted Poisoning<br>Backdoor<br>Trojan Attacks | Poisoning<br>Availability                    | _                                                |
| Testing  | Evasion Attacks<br>Adversarial Examples          | -                                            | Model Extraction<br>Model Inversion              |

#### **Evasion Attacks**



x "panda" 57.7% confidence



sign $(\nabla_x J(\theta, x, y))$ "nematode" 8.2% confidence



 $x + \epsilon \operatorname{sign}(\nabla_x J(\theta, x, y))$ "gibbon" 99.3 % confidence

Adversarial example



• [Szegedy et al. 13] Intriguing properties of neural networks

=

- [Biggio et al. 13] Evasion Attacks against Machine Learning at Test Time
- [Goodfellow et al. 14] Explaining and Harnessing Adversarial Examples
- [Carlini, Wagner 17] Towards Evaluating the Robustness of Neural Networks
- [Madry et al. 17] Towards Deep Learning Models Resistant to Adversarial Attacks
- [Kannan et al. 18] Adversarial Logit Pairing

•

#### **Evasion Attacks For Neural Networks**



[Carlini and Wagner 2017] Penalty method [Biggio et al. 2013, Madry et al. 2018] Projected Gradient Descent

## **Evasion Attacks for Security**



#### Challenge

- Attacks in feature space are not feasible in raw data space
   Solution
- New iterative attack algorithm taking into account feature constraints

#### How Effective are Evasion Attacks in Security?

Perfect accuracy (No attack)



Feed-Forward Neural Network

83 features

#### **Evasion Attacks in Connected Cars**

#### **Udacity Challenge**

- Public competition and dataset 2014
- Steering angle prediction from camera image



Predict direction: Straight, Left, Right

## How Effective are Evasion Attacks in Connected Cars?



Convolutional Neural Network 25 million parameters

#### **Adversarial Examples**







Original Image Class "Straight"

#### Adversarial Image Class "Right"

#### Adversarial Image Class "Left"

#### **Adversarial Examples**



 $\begin{array}{c}
0 \\
20 \\
40 \\
60 \\
60 \\
80 \\
100 \\
120 \\
0 \\
20 \\
40 \\
60 \\
80 \\
100 \\
120 \\
0 \\
20 \\
40 \\
60 \\
80 \\
100 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\
120 \\$ 

0

Original Image Class "Left"

Adversarial Image Class "Straight" Adversarial Image Class "Right"

#### Taxonomy

#### Attacker's Objective

|          | <b>Targeted</b><br>Target small set of<br>points | Availability<br>Target majority of<br>points | <b>Privacy</b><br>Learn sensitive<br>information |
|----------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|
| Training | Targeted Poisoning<br>Backdoor<br>Trojan Attacks | Poisoning<br>Availability                    | _                                                |
| Testing  | Evasion Attacks<br>Adversarial Examples          | -                                            | Model Extraction<br>Model Inversion              |

## Training-Time Attacks

• ML is trained by crowdsourcing data in many applications

- Social networks
- News articles
- Tweets



- Navigation systems
- Face recognition
- Mobile sensors

• Cannot fully trust training data!



## **Poisoning Availability Attacks**



- Attacker Objective:
  - Corrupt the predictions by the ML model significantly
- Attacker Capability:
  - Insert fraction of poisoning points in training

M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipulating Machine

Learning: Poisoning Attacks and Countermeasures for Regression Learning. In IEEE S&P 2018

#### **Optimization Formulation**

Given a training set D find a set of poisoning data points  $D_p$ 

that maximizes the adversary objective A on validation set  $D_{val}$ 

where corrupted model  $\theta_p$  is learned by minimizing the loss L on  $D \cup D_p$ 

$$\operatorname{argmax}_{D_p} A(D_{val}, \boldsymbol{\theta}_p) \text{ s.t.}_{\boldsymbol{\theta}_p} \boldsymbol{\theta}_p \in \operatorname{argmin}_{\boldsymbol{\theta}_p} L(D \cup D_p, \boldsymbol{\theta})$$

Bilevel Optimization NP-Hard!

#### First white-box attack for regression [Jagielski et al. 18]

- Determine optimal poisoning point  $(x_c, y_c)$
- Optimize by both  $x_c$  and  $y_c$

## How Effective are Poisoning Attacks?

• Improve existing attacks by a factor of 6.83



Predict loan rate with Ridge regression (i.e. with L2 regularization)

## Is It Really a Threat?

- Case study on healthcare dataset (predict Warfarin medicine dosage)
- At 20% poisoning rate
  - Modifies 75% of patients' dosages by 93.49% for LASSO
  - Modifies 10% of patients' dosages by a factor of 4.59 for Ridge
- At 8% poisoning rate
  - Modifies 50% of the patients' dosages by 75.06%

| Quntile | Initial Dosage | Ridge Difference | LASSO Difference |
|---------|----------------|------------------|------------------|
| 0.1     | 15.5 mg/wk     | 31.54%           | 37.20%           |
| 0.25    | 21 mg/wk       | 87.50%           | 93.49%           |
| 0.5     | 30 mg/wk       | 150.99%          | 139.31%          |
| 0.75    | 41.53 mg/wk    | 274.18%          | 224.08%          |
| 0.9     | 52.5 mg/wk     | 459.63%          | 358.89%          |

## **Open Problem: Understand AI Threat Surface**

#### Attacker's Objective

|          | <b>Targeted</b><br>Target small set of<br>points | Availability<br>Target majority of<br>points | <b>Privacy</b><br>Learn sensitive<br>information |
|----------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|
| Training | Targeted Poisoning<br>Backdoor<br>Trojan Attacks | Poisoning<br>Availability                    | _                                                |
| Testing  | Evasion Attacks<br>Adversarial Examples          | -                                            | Model Extraction<br>Model Inversion              |

- Application-specific attacks with realistic constraints
- How secure is my AI application?



Learning stage

## **Open Problem: Design Robust Al**

#### DEEP LEARNING EVERYWHERE



- Most AI models are vulnerable in face of attacks!
  - Evasion (testing-time) attacks
  - Poisoning (training-time) attacks
  - Privacy attacks
- How to make AI more robust to attacks?



## Takeaways

- Al has potential in security applications
  - Design intelligent and adaptive defense algorithms
  - Open problems: Interpretable models; Measurable security; Intelligent Automation for cyber security
- ...But AI becomes a target of attack
  - Traditional ML and Deep Neural Networks are not resilient to adversarial manipulations
  - Open problem: Understand threat surface for critical realworld applications in systematic way
  - Open problem: Design robust AI algorithms in face of attacks



## Acknowledgements



#### Northeastern University Cybersecurity & Privacy Institute



#### Alina Oprea a.oprea@northeastern.edu