
Beehive: Large-Scale Log Analysis for Detecting
Suspicious Activity in Enterprise Networks

Ting-Fang Yen
RSA Laboratories

Cambridge, MA, USA
tingfang.yen@rsa.com

Alina Oprea
RSA Laboratories

Cambridge, MA, USA
aoprea@rsa.com

Kaan Onarlioglu
Northeastern University

Boston, MA, USA
onarliog@ccs.neu.edu

Todd Leetham
EMC Corp

Hopkinton, MA, USA
todd.leetham@emc.com

William Robertson
Northeastern University

Boston, MA, USA
wkr@ccs.neu.edu

Ari Juels
RSA Laboratories

Cambridge, MA, USA
ajuels@rsa.com

Engin Kirda
Northeastern University

Boston, MA, USA
ek@ccs.neu.edu

ABSTRACT
As more and more Internet-based attacks arise, organiza-
tions are responding by deploying an assortment of security
products that generate situational intelligence in the form
of logs. These logs often contain high volumes of inter-
esting and useful information about activities in the net-
work, and are among the first data sources that informa-
tion security specialists consult when they suspect that an
attack has taken place. However, security products often
come from a patchwork of vendors, and are inconsistently
installed and administered. They generate logs whose for-
mats differ widely and that are often incomplete, mutually
contradictory, and very large in volume. Hence, although
this collected information is useful, it is often dirty.

We present a novel system, Beehive, that attacks the prob-
lem of automatically mining and extracting knowledge from
the dirty log data produced by a wide variety of security
products in a large enterprise. We improve on signature-
based approaches to detecting security incidents and instead
identify suspicious host behaviors that Beehive reports as
potential security incidents. These incidents can then be
further analyzed by incident response teams to determine
whether a policy violation or attack has occurred. We have
evaluated Beehive on the log data collected in a large enter-
prise, EMC, over a period of two weeks. We compare the
incidents identified by Beehive against enterprise Security
Operations Center reports, antivirus software alerts, and
feedback from enterprise security specialists. We show that
Beehive is able to identify malicious events and policy viola-
tions which would otherwise go undetected.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’13 Dec. 9-13, 2013, New Orleans, Louisiana, USA
Copyright 2013 ACM 978-1-4503-2015-3/13/12 ...$15.00.

1. INTRODUCTION
Protection of computing infrastructure in large organiza-

tions is a mounting challenge. Both generic malware and
targeted attacks (i.e., Advanced Persistent Threats (APTs))
are growing in sophistication and outstripping the capabil-
ities of traditional defenses such as antivirus software. At
the same time, administrators’ visibility into the posture
and behavior of hosts is eroding as employees increasingly
use personal devices for business applications. The tradi-
tional perimeters of organizations are breaking down, more-
over, due to new complexities in business intelligence shar-
ing, contractor relationships, and geographical distribution.

Many organizations are responding to this challenging land-
scape by deploying an assortment of security products that
enforce policies and generate situational intelligence in the
form of security logs. These products proxy web traffic,
detect malware infections, check for policy violations, im-
plement effective authentication mechanisms, and perform
many other useful security functions.

These products yield logs that contain high volumes of
interesting and useful information about activities in the
network, and are among the first data sources consulted by
security specialists when an attack is in evidence. For ex-
ample, authentication logs might suggest that an employee’s
account has been compromised because a login has occurred
from a region that the targeted employee has never visited.
As another example, web proxy logs might record which
site a victim visited before being compromised by a drive-
by download attack.

While it is standard practice to examine logs to discover or
conduct forensic analysis of suspicious activity in a network,
such investigation remains a largely manual process and of-
ten relies on signatures of known threats. A major challenge
is that security products often come from a patchwork of
vendors and are inconsistently installed and administered.
They produce log data with widely differing formats, and
logs that are often incomplete, mutually contradictory, very
large in volume (e.g., security-relevant logs in a large enter-
prise grow by terabytes per day), and filled with non-specific

or spurious event records. Hence, although this collected in-
formation is useful, and is sometimes the only information
at hand, at the same time it is often dirty.

In this paper, we attack the problem of automatically
mining and extracting knowledge from the dirty log data
produced by a wide variety of security products in a large
enterprise. Our aim is to improve on signature-based ap-
proaches to detecting security incidents and instead achieve
behavioral detection of suspicious host activities that sig-
nal potential security incidents. These incidents can then
be further analyzed by incident response teams to deter-
mine whether a policy violation or attack has occurred. A
key insight of our approach is that behaviors observed in
enterprise settings are often significantly more constrained
by policy and typical employee behavior than those on the
open Internet. Thus we can effectively identify suspicious
activities by analyzing behaviors in enterprise-specific ways.

Our automated approach, called Beehive, has three layers:
(1) Functionality to parse, filter, and normalize log data us-
ing network-specific configuration information; (2) Feature-
generators that process normalized log data to produce a set
of fifteen distinct features for each host per day; and (3) A
detector that performs clustering over features to identify
outlying, suspicious periods of host activity, which the sys-
tem reports as incidents.

We have evaluated Beehive on the log data collected in
a large enterprise, EMC, over a period of two weeks. We
compare the incidents automatically identified by Beehive
against enterprise Security Operations Center reports, an-
tivirus software alerts, and feedback received from informa-
tion security specialists in the company. We show that Bee-
hive is able to identify a number of malicious events within
the enterprise network, including malware infections and
policy violations, that otherwise go unnoticed by existing,
state-of-the-art security tools and personnel.

Our work makes the following contributions:

• We propose a novel automated approach called Bee-
hive that analyzes very large volumes of disparate log
data collected in large organizations to detect mali-
cious activity such as malware infections and policy
violations. Beehive leverages unique features of enter-
prise networks to produce accurate, actionable infor-
mation.

• We have evaluated Beehive on more than 6 terabytes of
log data and have correctly identified suspicious activ-
ities that went unnoticed by existing state-of-the-art
security tools and personnel.

• To the best of our knowledge, ours is the first explo-
ration of the challenges of “big data” security analytics
for large volumes of disparate, real-world log data.

2. PROBLEM AND CHALLENGES
Here we describe the threat model we address, the na-

ture of the log data on which the system operates, and the
challenges that arise in designing and evaluating Beehive.

2.1 Threat Model
Beehive aims to detect threats arising in two different sce-

narios. The first scenario involves a network host that is
infected or at imminent risk of infection. A host of this
kind may exhibit malicious or dangerous behaviors such as

contacting an attack website, communicating with a C&C
server, or exfiltrating data to a previously unseen external
destination. These behaviors may result from the automated
activities of malware (e.g, zombie machines in a botnet), di-
rect control of hosts by an attacker (e.g., through a remote
access Trojan), or benign users being tricked into dangerous
behavior (e.g., via phishing attacks).

The second scenario concerns host-based user activities
that violate enterprise policies. These activities are not nec-
essarily malicious in intent, but are potentially damaging to
the business, and thus undesirable. Examples include peer-
to-peer file sharing, instant messaging, multimedia stream-
ing, viewing of adult content, online gaming, and using prox-
ies and tunneling services in an attempt to bypass enterprise
firewalls and other network-perimeter security mechanisms.

2.2 Data
Beehive uses a wide range of logs generated by various net-

work devices, including web proxies that log every outbound
connection, DHCP servers that log dynamic IP address as-
signments, VPN servers that log remote connections to the
enterprise network, Windows domain controllers that log au-
thentication attempts within the corporate domain, and an-
tivirus software that logs the results of malware scans on
end hosts. These logs are stored in a commercial security
information and event management (SIEM) system.

All of these devices monitor and log the activities of enter-
prise hosts transparently, with the notable exception of the
web proxy. For every external destination, the web proxy
consults a list of domain reputation scores and site categories
maintained by the product vendor, and automatically blocks
the connection if the destination has a low reputation or is in
a prohibited category (e.g., adult-content sites). However,
if the destination is not on this list, the proxy displays to
the user a warning page describing the potential dangers of
connecting to an unknown destination. The user must then
explicitly click on a link to acknowledge agreement to the
company’s network policies, or not visit the site.

Beehive makes heavy use of the web proxy logs, since the
majority of network activity in the enterprise is over HTTP
or HTTPS. In addition, these logs include all fields in HTTP
headers, making them a particularly useful resource for un-
derstanding users’ browsing behavior, detecting suspicious
connections, and forensic analysis. Table 1 lists a subset of
the fields included in web proxy logs.

IP Header Source/destination IP and port,
protocol

Transport Header

Destination domain, URL,
HTTP status code, web referer,
domain reputation, domain
category, user-agent string

Connection Attribute Sent and received bytes, network
policy

Table 1: Fields in web proxy logs.

At EMC, 1.4 billion log messages are generated daily on
average, at a rate of around one terabyte a day. These “raw”
logs contain huge amounts of information about user and
host behaviors. They are also noisy — with non-standardized
timestamps, different identifiers (i.e., some store a host’s IP

address, some the hostname, others the username) — and
can be truncated or arrive out of order. We discuss the
challenges of analyzing such “big data” in the next section.

2.3 Challenges
The massive number of events observed on a real-life en-

terprise network and logged inside the SIEM system poses a
major challenge (a “big data” problem) in log analysis and
detection of security incidents. As noted above, we observed
collection by the SIEM an average of 1.4 billion logs per
day in our case study. Timely detection of critical threats
by Beehive thus requires efficient data-reduction algorithms
and strategies to focus on security-relevant information in
the logs.

A second challenge for Beehive is that of identifying mean-
ingful security incidents in the face of a significant semantic
gap between the logs collected by the SIEM system and the
information that security analysts require to identify suspi-
cious host behavior. In our case, Beehive needs to produce
a daily report of suspicious hosts; however, most network
devices only log the IP addresses of network endpoints. As-
sociating IP addresses with specific hosts requires correla-
tion across different logs, which can be especially challenging
when IP addresses are dynamically assigned in the network.
The situation is complicated still more by the fact that the
logging devices may be located in different time zones (as is
typical for the infrastructure of a global organization), and
thus the timestamps they produce must be normalized for
accurate temporal correlation.

Finally, a major challenge in designing Beehive is the dif-
ficulty of evaluating its effectiveness accurately, due to an
inherent lack of ground truth. Specifically, an enterprise
network typically has state-of-the-art security technologies
deployed both on the network perimeter and on hosts, and
security analysts actively work toward resolving known in-
cidents. As a result, real-life network data obtained from
such a network often lacks traces of known security threats.
For example, malware on hosts is often cleaned or quaran-
tined before becoming active, and accesses to botnet C&C
servers are often blocked by the firewall. Such threat reso-
lution prevents automatic testing of Beehive over a ground
truth of known malicious network traffic, as none is in ev-
idence. Many of the incidents identified by Beehive are in
fact unknown to security systems in use in the enterprise.
We therefore must rely on manual evaluation of the security
incidents and suspicious hosts identified by Beehive.

In designing Beehive, we explore and tackle these chal-
lenges of big data security analytics. Briefly, in a pre-processing
phase, Beehive normalizes the timestamps of all log entries
to UTC, determines statically and dynamically assigned IP
addresses of hosts, and constructs bindings between hosts
and IP addresses, thus attributing every logged event to a
specific host. Beehive then extracts enterprise-specific fea-
tures for individual hosts, and clusters hosts with similar
suspicious behaviors. The resulting outlying clusters are
presented as incidents to be examined by security analysts.

To assess the efficacy of Beehive in this study, we manu-
ally investigate its reported incidents with the help of our
enterprise’s Security Operations Center (SOC). Given exist-
ing enterprise resolution of attacks with known signatures,
of particular interest in our study is Beehive’s identification
of network policy violations by users and of malware not
detected by current signature-based tools.

3. THE BEEHIVE SYSTEM
In this section we describe in detail the operation of the

Beehive system. We start by describing our approach to
remove noise and inconsistencies in the data collected by the
SIEM. We then discuss the selection of features distinctive to
an enterprise setting for detecting misbehavior. Finally, we
describe the unsupervised learning approach we employed
for generating incidents of anomalous host behavior.

3.1 Data Normalization
In order to address the challenges of dirty and inconsis-

tent data explained in the previous sections, Beehive pre-
processes the log data before starting its behavioral-analysis.
We explain different stages of this process below.

Timestamp Normalization. In an enterprise running a
global network, devices that produce critical logs are located
in different geographies. Moreover, these devices may times-
tamp logs differently, using their local time zones, UTC, or
other time representations. This results in log entries with
inconsistent timestamps that must be normalized to a stan-
dard representation before any temporal analysis becomes
accurate. While delegating the coordination of time set-
tings to network administrators may be feasible for small
networks, these approaches are unworkable at the scale of a
global enterprise.

Beehive addresses this problem by leveraging the common
use by enterprises of a central SIEM system for log man-
agement that tags each log entry with its own timestamp
tsiem, recording the time at which the log was received by
the SIEM. For each device that sends logs to the SIEM sys-
tem, we first compute a set of time difference values ∆i =
tsiem,i−tdevice,i (rounded off to the nearest 30 minutes) from
each log entry i generated over a large time period (e.g., one
month). Next, we determine the timestamp correction value
∆correction for the device by setting it to the value ∆i that
accounts for the majority of differences. Applying this cor-
rection value to each device timestamp gives us a normalized
timestamp value, tnormalized,i = tdevice,i + ∆correction. In
our case, as EMC’s SIEM system is configured to use UTC
timestamps, tnormalized,i corresponds to UTC time. We ap-
ply this normalization technique to each device on the net-
work that produces log data, normalizing all log timestamps
to UTC.

IP address-to-Host Mapping. In an enterprise setting,
end hosts are usually assigned IP addresses dynamically
for a short time period when they connect to the network,
through the Dynamic Host Configuration Protocol (DHCP).
This makes it difficult to associate the IP addresses reported
in logs with unique host machines during analysis, because
that same IP address could be assigned to different hosts
after the event has been logged.

To address this issue, Beehive analyzes the DHCP server
logs collected in the SIEM system and constructs a database
of IP-to-host mappings (i.e., bindings) over time. Each bind-
ing is represented as a tuple {IP address, hostname, MAC
address, start-time, end-time} mapping an IP address to a
host in a specific time interval. This algorithm is run daily
to update existing bindings as new DHCP logs become avail-
able. Given the resulting database of bindings, Beehive can
identify the host corresponding to a given IP address with
reference to a normalized timestamp.

Static IP Address Detection. An IP-to-host lookup on
the bindings database we construct may fail because an IP
address is assigned statically to a specific host, not dynam-
ically leased. Maintaining a list of static IP address assign-
ments, however, is difficult in a large enterprise network,
and administrator-created lists are often non-existant or out-
dated. Thus Beehive also adopts the following method for
automatically identifying hosts with static IP addresses.

In the bootstrap step, we first retrieve all IP addresses
found in all collected logs to create a pool of IP addresses
active in the enterprise, denoted by set A. Next, we retrieve
IP addresses from logs that we know must only contain hosts
with dynamic IP addresses, such as DHCP and VPN logs,
to create a pool of known dynamic IP addresses, denoted by
set D. We then compute the set difference S = A−D which
contains potentially static IP addresses, perform a reverse
DNS lookup for every address in S, and save the results
to complete the bootstrap phase. Periodically (e.g., once a
day), as new logs become available, we repeat this procedure
to harvest new IP addresses and update the sets A, D and S
accordingly. However, unlike before, with each iteration we
resolve IP addresses in S to their host names and compare
the names to the previously stored values. If the host names
changed between two iterations, we conclude that the given
IP address is not statically assigned, and we remove it from
the set S. In this way, we refine the pool of potentially static
IP addresses with each iteration. If Beehive fails to find a
corresponding binding for an IP-to-host lookup, but instead
finds the given address in S, we treat that IP address as a
static host and use the host name found in S.

Dedicated Hosts. Beehive focuses on monitoring the be-
havior of dedicated hosts, which are machines utilized by a
single user. Since a list of dedicated hosts is difficult to main-
tain in large enterprises due to constantly changing network
configurations, we infer the list of dedicated hosts from the
data available in the SIEM system.

We make use of authentication logs generated by Mi-
crosoft Windows domain controllers for this purpose. For
each user in the enterprise, a history is kept of hosts onto
which the user had authenticated (i.e., logged on), the num-
ber of authentications, and the authentication timestamps.
This information is collected over the course of three months
to build an accurate history of user activity. At the end of
the collection period, we consider a host as “dedicated” if a
single user is responsible for the large majority (e.g., 95%)
of the authentication events on that host. Through this pro-
cess, we have identified over 78,000 dedicated hosts at EMC.

3.2 Feature Extraction
We extracted features from the logs to characterize out-

bound communications from the enterprise. Our feature se-
lection is guided by observation of known malware behav-
iors and policy violations within EMC, as well as proper-
ties of the environment in which Beehive operates, i.e., the
presence of perimeter defenses in the form of strict firewall
policies, the business orientation of (most) users’ activities,
and the (relatively) homogeneous software configurations of
enterprise-managed hosts.

For each dedicated host in the enterprise, we generate
daily a feature vector that includes the 15 features listed in
Table 2. The features can be grouped into four categories:
features based on new and unpopular destinations contacted
by the host, features related to the host’s software configu-

ration, features related to the company policy, and features
based on traffic volume and timing. We describe each of
them in detail below.

Feature Type # Description

Destination-
Based

1 New destinations
2 New dests. w/o whitelisted referer
3 Unpopular raw IP destinations
4 Fraction of unpopular raw IP dests.

Host-Based 5 New user-agent strings

Policy-
Based

6 Blocked domains
7 Blocked connections
8 Challenged domains
9 Challenged connections
10 Consented domains
11 Consented connections

Traffic-
Based

12 Connection spikes
13 Domain spikes
14 Connections bursts
15 Domain bursts

Table 2: Beehive features.

3.2.1 Destination-Based Features
We are interested in identifying hosts that communicate

with new, or obscure, external destinations that are never
(or rarely) contacted from within EMC. Assuming popular
websites are better administered and less likely to be com-
promised, connections to uncommon destinations may be
indicative of suspicious behavior (e.g., communication with
command-and-control servers).

New Destinations. Our first destination-based feature is
the number of new external destinations contacted by each
host per day. We build a history of external destinations
contacted by internal hosts over time. After an initial boot-
strapping period of one month, we consider a destination to
be new on a particular day if it has never been contacted by
hosts in the enterprise within the observation period (and
as such is not part of the history). On a daily basis we up-
date the history to include new destinations contacted in the
previous day.

We encountered a number of challenges when analyzing
web proxy logs to build the history of external destinations.
In our initial, näıve, implementation, we process every proxy
log, resolve all destinations that are IP addresses, and in-
clude all observed new destinations in the history. It turns
out that this näıve approach is not scalable both in terms of
running time and history size.

First, the näıve implementation takes 15 hours to process
a day’s worth of web proxy logs (the equivalent of 300 million
logs, or 600 GB). Second, to our surprise, the number of new
destinations does not decrease over time, even as the size of
the history grows to 4.3 million unique destinations over the
course of a month. As shown in Figure 1, between 30% to
40% (about 145,000) of all unique destinations each day are
new. In the näıve approach, all of these new destinations
are added to the history daily, and as such the size of the
history grows indefinitely over time.

Further inspection of the web proxy logs showed that the
majority of the new destinations are content delivery net-

works (CDNs), cloud services (which frequently use random
strings as subdomains), or IP addresses belonging to popu-
lar services (Google, Facebook, Twitter). To make Beehive
scalable, we employ a number of data reduction techniques,
including filtering, custom whitelisting and domain “fold-
ing.”

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0 5 10 15 20 25 30

N
um

be
r

of
 u

ni
qu

e
de

st
in

at
io

ns

Day

Unique destinations per day
Unique new destinations per day

Destinations in history (naive approach)

Figure 1: Destinations contacted by internal hosts,
näıve approach.

We first filter “popular” destinations by creating a cus-
tom whitelist, where “popularity” is defined over hosts in
the enterprise. The whitelist includes external destinations
(both domains and IP subnets) whose number of interact-
ing internal hosts over time (i.e., a training period of one
week) exceeds a threshold. Figure 2 shows the amount of
web traffic filtered using a whitelist constructed from the
first week’s worth of data from April 2013. A threshold of
100 hosts achieves a reduction from 300 million logs a day to
80 million—a 74% reduction in the number of logs Beehive
needs to process.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

Mon Tue Wed Thu Fri Sat Sun

N
um

be
r

of
 l

og
s

Day

All logs
Doms < 1000 hosts
Doms < 500 hosts
Doms < 200 hosts
Doms < 100 hosts

Figure 2: Data reduction through custom whitelist-
ing.

In addition to custom whitelisting, we “fold” destinations
to the second-level domain so as to filter services employing
random strings as subdomains. We also ignore connections
retrieving “favicon” — likely due to bookmarks. Finally, we

choose not to resolve raw IPs (since most legitimate sites are
referred to by their domain name), and always consider raw
IPs that are not on the whitelist as “new”.

These optimizations reduce daily processing time from 15
hours to about five hours. The number of new (folded) des-
tinations added to the history is reduced to an average of
28,000 per day. After a period of four months (from January
13th to May 13th, 2013), our history of external destinations
has 2.7 million folded domains, whereas the history built
näıvely already had 4.3 million domains after one month.

New destinations without whitelisted referer. Our
second destination-based feature is an extension of the first
one, but counts the number of “new” destinations contacted
by a host without a whitelisted HTTP referer. Users are
most commonly directed to new sites by search engines, news
sites, or advertisements. In these cases, we expect the HTTP
referer to be one listed in our custom whitelist. Host that
visit new sites without being referred by a reputable source
(or with no referer at all) are considered more suspicious.

Unpopular IP destinations. We are also interested in
unpopular external destinations that are raw IP addresses.
We first count the number of destinations contacted by a
host that are both unpopular (not on the custom whitelist
described above) and are IP addresses. Connections to un-
popular IPs can indicate suspicious activity, as legitimate
services can usually be reached by their domain names. Sec-
ond, we include the fraction of unpopular destinations con-
tacted by a host that day that are IP addresses. While occa-
sional communication with IP destinations is normal (e.g.,
to IP ranges owned by CDNs), such behavior is suspicious
when frequent.

3.2.2 Host-Based Features
Hosts in an enterprise are significantly more homogeneous

in their software configurations than, for example, those in
academic networks. Hence we are interested in cases where
hosts install new (and potentially unauthorized) software.

Lacking visibility onto the host machine, and having ac-
cess only to logs collected from network devices, we infer
the software configurations on a host from the user-agent
(UA) strings included in HTTP request headers. A user-
agent string includes the name of the application making
the request, its version, capabilities, and the operating en-
vironment. Our host-based feature is hence the number of
“new” UA strings from the host.

We build a history of UA strings per host over a month-
long period, during which every UA string observed from the
host is stored. Afterwards, a UA string is considered“new”if
it is sufficiently distinct from all UA strings in that host’s his-
tory. Edit distance (also called Levenshtein distance) is used
to compare UA strings, measuring the number of character
insertions, deletions, and substitutions required to change
one string into another. This allows us to accommodate
“new” UA strings that result from software updates, where
only a small substring (e.g., the version number) changes.

3.2.3 Policy-Based Features
Also unique to enterprise environments is the enforcement

of network policies on outbound connections. As described
in Section 2.2, a connection to an external destination can
be blocked if it has a dubious reputation or is categorized
as prohibited for employees. Blocked domains (and connec-

tions) are thus a coarse indicator of host misbehavior.
Upon visiting an unknown destination, i.e., one that has

not yet been categorized or rated, the user must explicitly
agree to adhere to the company’s policies before being al-
lowed to proceed. We refer to the domains (and connections)
that require this acknowledgment as challenged, and those
to which the user has agreed as consented.

Our policy-based features include all three types of com-
munications described above. For a host, we count the num-
ber of domains (and connections) contacted by the host that
are blocked, challenged, or consented.

3.2.4 Traffic-Based Features
Sudden spikes in a host’s traffic volume can be caused

by malware (e.g., scanning, or bot activities in response to
botmaster commands) or automated processes. Our traffic-
based features attempt to capture these interesting activities
by the amount of time when a host is generating abnormally
high volumes of traffic.

Specifically, we define a connection (or domain) spike as
a one-minute window when the host generates more con-
nections (or contacts more domains) than a threshold. A
connection (or domain) burst is a time interval in which ev-
ery minute is a connection (or domain) spike.

To identify an appropriate threshold for “high” traffic vol-
ume, we examine all dedicated hosts over a one-week in-
terval, and count the number of connections (and domains)
each host generates (or contacts) per minute. Figure 3 shows
the cumulative distribution across all one-minute windows
for all dedicated hosts. 90% of the hosts generated less
than 101 connections, and contacted less than 17 distinct
domains, per minute. We hence set the threshold for con-
nection spikes and domain spikes to these values.

Figure 3: CDF for number of web connections and
number of domains contacted by a host per one-
minute interval.

For bursts, we relax its definition slightly, so that the
threshold for spikes within a burst is the 75% percentile of
all one-minute windows across all hosts (see Figure 3). This
value is 26 for connection spikes, and 6 for domain spikes.

For each dedicated host, its traffic-based features include:
1) the number of connections spikes, 2) the number of do-
main spikes, 3) the duration of the longest connection burst,
and 4) the duration of the longest domain burst.

3.3 Clustering
Lacking ground truth as to which hosts are infected or be-

having anomalously (a challenge we describe in Section 2.3),
we tackle the problem of detection through an unsupervised
learning approach – clustering. Since employees in the en-
terprise perform specific job functions on the corporate net-
work, and there are multiple employees in most departments,
we should be able to observe groups of hosts (belonging to
users with similar roles) exhibiting similar behaviors, while
misbehaving hosts with unique behavioral patterns appear
as outliers.

Given the 15 features described in Section 3.2, each inter-
nal host is represented as a 15-dimensional vector, v = (v[1],
v[2], · · · , v[15]). However, the features may be related or de-
pendent upon one another; e.g., a domain spike also triggers
a connection spike. To remove such dependencies between
the features and reduce the dimensionality of the vectors,
we apply Principal Component Analysis (PCA) [23].

Briefly, PCA enables data reduction by projecting the
original vectors onto a new set of axes (i.e., the principal
components). Each principal component is chosen to cap-
ture as much of the variance (and thus the original infor-
mation) in the data as possible. Depending on how much
variance we want to capture from the original data, the top
m principal components are selected, permitting projection
of the original vectors down to dimensionality m. In Bee-
hive, we select the top m components that capture at least
95% of the data variance.

We apply a clustering algorithm to the projected vectors
after PCA. Our algorithm is an adaptation of the K-means
clustering algorithm, but does not require the number of
clusters to be specified in advance [25].

1. Randomly select a vector as the first cluster hub. As-
sign all vectors to this cluster.

2. Select the vector furthest away from its hub as a new
hub. Reassign every vector to the cluster with the
closest hub.

3. Repeat step 2 until no vector is further away from its
hub than half of the average hub-to-hub distance.

We compare vectors via L1 distance, i.e., for vectors v1 and
v2, their distance is L1Dist(v1, v2) =

∑m
i=1 |v1[i]− v2[i]|.

The clustering algorithm in Beehive is applied daily on the
feature vectors for all active, dedicated hosts in the enter-
prise. (We observe between 27,000 and 35,000 hosts active
during weekdays, and between 9,000 and 10,100 hosts ac-
tive on weekends.) Interestingly, after one iteration of the
algorithm, the vast majority of hosts fall into one large clus-
ter, while the remaining clusters consist of few hosts whose
behaviors deviate significantly from the norm (i.e., outliers).

Beehive generates incidents for the top outlying hosts, and
reports them to the security analyst. Note that the algo-
rithm forms clusters by iteratively identifying the node that
is furthest away from its cluster hub, and so the clusters
have an inherent ordering to them. In cases where the algo-
rithm is biased by extreme outliers (e.g., forming only two
clusters, one with a single node, and the other with all other
nodes), we apply PCA and the clustering algorithm again
to the largest cluster. This process is iterated until at least
50 outlying hosts are identified in a day.

4. EVALUATION
We evaluated Beehive in a large enterprise, EMC, over a

period of two weeks, from April 22 to May 5, 2013. During
this period, Beehive generated 784 incidents, with an average
of 56 incidents per day and a standard deviation of 6.88.
Among these, only eight incidents overlap with the alerts
generated by the enterprise’s state-of-the-art security tools.

To evaluate Beehive in the absence of ground truth – in
the sense of accurate, existing classification of identified in-
cidents – we resort to a two-step process of manual investi-
gation. We first examine and label all incidents generated
by Beehive (see Section 4.2). Incidents whose cause we could
not identify are labeled as “suspicious” and presented to the
enterprise’s Security Operations Center (SOC) for further
analysis (see Section 4.3).

4.1 Clustering Context
In addition to the host and its feature vector, each Bee-

hive incident also includes contextual information about the
cluster each host belongs to, such as the number of hosts
in the cluster and the average value of the feature vectors.
This information facilitates the manual investigation process
described below, as it allows the analyst to quickly identify
the distinctive features in each cluster.

To give intuition about the types of activities captured
by the clustering, Figure 4 shows, for all 15 outlying clus-
ters generated on April 24th, the normalized average feature
vectors. That is, we first compute the mean feature vector
of each cluster averaged over all vectors in that cluster, and
then normalize each vector component — i.e., feature value
– relative to the maximum across all mean feature vectors.
As shown in Figure 4, the clusters are distinct in that they
are characterized by different (subsets of) features.

While clusters are distinct from one another, the hosts
in the same cluster exhibit very similar behaviors. Table 3
shows the actual feature vectors of hosts in two example
clusters (3 and 6) on April 24th. For instance, cluster 3 is
unique in its high numbers of blocked connections, connec-
tions spikes, and domain spikes — suggesting an automated
process is responsible for the activity. (Indeed, during our
investigation described in the next section, hosts in this clus-
ter are found to violate the company policy by contacting
blocked domains excessively.) As another example, hosts
in cluster 6 contacted high numbers of new destinations, as
well as generating connection spikes to blocked and chal-
lenged domains. Our investigation revealed that this cluster
is comprised solely of infected hosts that contact dynami-
cally generated domains (DGAs).

In the following, we detail our manual investigation pro-
cess and the suspicious activities detected by Beehive.

4.2 Manual Labeling
Our manual investigation process for a host began by iden-

tifying the feature(s) that were distinctive for the host’s clus-
ter. We then attempted to identify the root cause of this
distinction using contextual information reported by Beehive
and examining raw logs collected by the SIEM system about
the host. The latter involved looking up the UA strings,
HTTP status codes, web referers, and timing patterns in
connections from the host, as well as the reputation of con-
tacted domains (using McAfee SiteAdvisor and URLvoid 1)

1http://www.urlvoid.com

and when they were registered (using DomainTools 2).
Briefly, 25.25% of the Beehive incidents were either con-

firmed malware or“suspicious”(we give more details on“sus-
picious” incidents in Section 4.3), 39.41% were violations of
enterprise security policies, and 35.33% were associated with
unrecognized (but noisy) software or services. Table 4 lists
the number and percentage of incidents in each category.

Category # of incidents

Malware 117 14.92%
Suspicious 81 10.33%

Policy Violation - Tunneling 1 0.12%
Policy Violation - File sharing 2 0.25%
Policy Violation - Streaming 86 10.96%
Policy Violation - IM 56 7.14%
Policy Violation - Porn 6 0.76%
Policy Violation - Gaming 13 1.65%
Policy Violation - Proxy 4 0.51%
Policy Violation - Remote access 8 1.02%
Policy Violation - Blocked sites 133 16.96%

Other - Uncategorized sites 57 7.27%
Other - Browsing 63 8.03%
Other - Automated 157 20.02%

Table 4: Breakdown of the categories of Beehive inci-
dents over two weeks from April 22 to May 5, 2013.

Many of the malware detected by Beehive contacted (or at-
tempted to contact) domains created by domain-generation
algorithms (DGAs). The destination-based features (see
Section 3.2) proved to be most useful in identifying such
malware, as most of the DGA hosts sit in clusters with high
numbers of new destinations. Among clusters from April
24th presented in Figure 4, all of the hosts in clusters 1, 6
and 8 were confirmed to be infected with DGA malware.
None of these infections were previously detected by an-
tivirus software or by the enterprise SOC.

Beehive also detected violations of the enterprise’s network
security policies. As with many companies, these forbid sub-
stantive personal use of company computing resources, in-
stallation of software not explicitly approved by the com-
pany, access to offensive materials (e.g. pornographic or
otherwise disparaging content), and injudiciously high con-
sumption of bandwidth for business purposes. Our manual
investigation found 16.96% of the incidents associated with
heavy traffic to external destinations blocked due to business
concerns or labeled as potentially unsafe (e.g., sites associ-
ated with freeware). 10.96% of incidents were caused by
high-volume video streaming applications, often character-
ized by connection or domain spikes or numerous challenged
connections. Others included file sharing, third-party in-
stant messaging, online gaming, viewing of adult content, or
using tunneling or proxy services to bypass network security
mechanisms (e.g., to access blocked websites).

In addition to malware and policy violations, Beehive also
detected unusual activities originating from possibly benign,
but unrecognized and likely automated applications. For
example, 20.02% of the incidents involved hosts that made
tens of thousands of connections a day to the same website.
These were typically news, sports, or finance sites, but in-
cluded ad servers, online forums, and sites hosted on Google

2http://www.domaintools.com

Figure 4: Normalized average feature vectors for clusters generated on April 24, 2013.

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cluster 3 0 0 19 0.95 0 4 47833 7 52 0 0 386 96 2 2
0 0 2 0.33 0 11 25479 1 1 0 0 309 6 2 1

Cluster 6

247 247 11 0.041 1 8 61 156 163 0 0 11 19 1 1
200 200 14 0.053 0 36 435 142 170 6 10 27 34 2 2
239 239 22 0.080 0 26 976 153 177 0 0 26 29 2 1
214 214 0 0 0 31 739 142 147 0 0 0 0 0 0

Maximum value 490 489 286 0.984 4 114 47833 418 16373 64 3832 386 213 48 48

Table 3: Feature vectors for hosts in two example clusters. Each row corresponds to the feature vector for a
host in that cluster. The last row shows the maximum value for each feature across all clusters on April 24,
2013.

App Engine. Several hosts were found to be mining bitcoins.
We labeled all of these hosts as “Other - Automated.”

Finally, 8.03% of the incidents either had high numbers
(thousands per day) of consented connections, indicating
that the user had explicitly acknowledged the company’s
network policies before proceeding to the site, or long pe-
riods (i.e., lasting several hours) of continuous web traffic
to various domains. Without further evidence of malicious
behavior, we classified these incidents in the“Other - Brows-
ing” category, though they may not be entirely user-driven.

4.3 Investigation by the SOC
The first-round manual labeling process described in Sec-

tion 4.2 yielded 81 incidents (10.33%) for which we could
not identify the applications responsible for the observed
behavior in the incident. The hosts in those incidents com-
municated with low-reputation websites (e.g., flagged by an-
tivirus vendors, registered within the past six months, with
DGA-like subdomains), downloaded executables or zipped
files, used malformed HTTP user-agent strings, or repeat-
edly contacted the same URL at semi-regular intervals.

We labeled these incidents as “suspicious,” and presented
them to the enterprise SOC for a second round of analysis.
Table 5 shows the labels the SOC assigned to these incidents.

While 54.32% of the “suspicious” incidents were confirmed

SOC label # of suspicious incidents

Adware or Spyware 35 43.21%
Further investigation 26 32.09%
Other malware 9 11.11%
Policy Violation - Gaming 1 1.23%
Policy Violation - IM 1 1.23%
Policy Violation - Streaming 2 2.47%
Other - Uncategorized sites 7 8.64%

Table 5: “Suspicious” incidents categorized by the
SOC at EMC.

by the SOC as adware, spyware, or known malware, a signifi-
cant fraction (32.09%) were considered serious incidents and
merit further investigation. These questionable activities
are potentially previously unknown malware or other threats
opaque to state-of-the-art security tools, and in-depth host
inspection is necessary to determine the exact root cause.

A small number of the investigated “suspicious” incidents
were identified as policy violations (4.93%) or uncategorized
sites (8.64%). Their association with obscure software or
low-reputation sites prompted their identification as “suspi-
cious” in the first-round investigation.

4.4 Summary
With assistance from the enterprise SOC, we manually

investigated 784 Beehive incidents generated over the course
of two weeks. Overall, we find 25.25% of the incidents to be
malware-related or that warrant further SOC investigation,
39.41% to be policy violations, and 35.33% associated with
unrecognized, but automated, software or services. Only 8
of the 784 incidents (1.02%) were detected by existing state-
of-the art security tools, demonstrating Beehive’s ability to
identify previously unknown anomalous behaviors.

5. RELATED WORK
Network and host-based intrusion detection systems that

use statistical and machine learning techniques have seen
two decades of extensive research [11, 15, 33]. In addition,
both commercial and open source products that combine sig-
nature, traffic and anomaly inspection techniques are widely
available today [1, 2, 3]. To the best of our knowledge,
though, we present the first study of the challenges of san-
itizing, correlating and analyzing large-scale log data col-
lected from an enterprise of this scale, and of detecting both
compromised hosts and business policy violations.

There are many existing systems that aim to help human
analysts detect compromised hosts or stolen credentials, and
also a number of case studies on enterprise networks. For
example, Chapple et al. [12] present a case study on the
detection of anomalous authentication attempts to a uni-
versity virtual private network using a clustering technique
focused on geographic distance. Zhang et al. [41] extend
this approach with additional machine-learning features to
automatically detect VPN account compromises in univer-
sity networks. In an earlier study, Levine et al. [26] use
honeypots to detect exploited systems on enterprise net-
works. Similarly, Beehive aims to automate detection tasks
for security analysts. In addition to new detection meth-
ods, however, we present the largest-scale case study so far
on a real-life production network, together with the unique
challenges of analyzing big and disjoint log data.

While there exists work that analyzes a specific type of
malicious activity on the network (e.g., worms [37] or spam-
mers [32]), recent attempts at malware detection mainly
focus on detection of botnets. For instance, several sys-
tems [10, 27, 35] use classification and correlation techniques
to identify C&C traffic from IRC botnets. BotTrack [16]
combines a NetFlow-based approach with the PageRank al-
gorithm to detect P2P botnets. A number of studies mon-
itor crowd communication behaviors of multiple hosts and
analyze the spatial-temporal correlations between them to
detect botnet infected hosts independent of the protocol
used for C&C communication [18, 20, 24, 40], while others
specifically focus on DNS traffic similarity [13, 36]. BotH-
unter [19] inspects the two-way communications at the net-
work perimeter to identify specific stages of botnet infec-
tion. DISCLOSURE [8] presents a set of detection features
to identify C&C traffic using NetFlow records. Other works
focus on tracking and measuring botnets [4, 14, 17, 22, 34].

Other work aims to identify domains that exhibit mali-
cious behavior instead of infected hosts. For example, some
systems [30, 29, 31, 21] propose various detection mecha-
nisms for malicious fast-flux services. In a more general
approach, EXPOSURE [9], Notos [5], and Kopis [6] perform
passive DNS analysis to identify malicious domains. Ma et

al. [28] extract lexical and host-based URL features from
spam emails and use active DNS probing on domain names
to identify malicious websites. Another branch of research
aims to detect dynamically generated malicious domains by
modeling their lexical structures and utilizing the high num-
ber of failed DNS queries observed in botnets using such do-
mains [7, 38, 39]. In comparison, Beehive uses standard log
data to detect suspicious activity in an enterprise network.

These approaches use network data for detection. In con-
trast, Beehive uses dirty enterprise log data to detect po-
tentially malicious host behavior as well as policy violations
specific to an enterprise setting.

6. CONCLUSIONS
In this paper, we presented a novel system called Bee-

hive that attacks the problem of automatically mining and
extracting knowledge in a large enterprise from dirty logs
generated by a variety of network devices. The major chal-
lenges are the“big data”problem (at EMC, an average of 1.4
billion log messages—about 1 terabyte—are generated per
day), and the semantic gap between the information stored
in the logs and that required by security analysts to detect
suspicious behavior.

We developed efficient techniques to remove noise in the
logs, including normalizing log timestamps to UTC and cre-
ating an IP-to-hostname mapping that standardizes host
identifiers across log types. Using a custom whitelist built
by observing communications patterns in the enterprise, we
effectively reduced the data Beehive inspects from 300 mil-
lion log messages per day to 80 million (a 74% reduction).

Beehive improves on signature-based approaches to detect-
ing security incidents. Instead, it flags suspected security
incidents in hosts based on behavioral analysis. In our eval-
uation, Beehive detected malware infections and policy vi-
olations that went otherwise unnoticed by existing, state-
of-the-art security tools and personnel. Specifically, for log
files collected in a large enterprise over two weeks, 25.25%
of Beehive incidents were confirmed to be malware-related
or to warrant further investigation by the enterprise SOC,
39.41% were policy violations, and 35.33% were associated
with unrecognized software or services.

To the best of our knowledge, ours is the first exploration
of the challenges of “big data” security analytics at the scale
of real-world enterprise log data.

Acknowledgments
We are grateful to members of the EMC CIRT team for
providing us access to the enterprise log data, and for their
help in investigating Beehive alerts.

This research is partly funded by National Science Foun-
dation (NSF) under grant CNS-1116777. Engin Kirda also
thanks Sy and Laurie Sternberg for their generous support.

7. REFERENCES
[1] OSSEC – Open Source Security.

http://www.ossec.net.

[2] Snort. http://www.snort.org.

[3] The Bro Network Security Monitor.
http://www.bro.org/.

[4] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis.
A Multifaceted Approach to Understanding the
Botnet Phenomenon. In IMC, 2006.

[5] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and
N. Feamster. Building a Dynamic Reputation System
for DNS. In USENIX Security, 2010.

[6] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou,
II, and D. Dagon. Detecting Malware Domains at the
Upper DNS Hierarchy. In USENIX Security, 2011.

[7] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou,
S. Abu-Nimeh, W. Lee, and D. Dagon. From
Throw-away Traffic to Bots: Detecting the Rise of
DGA-based Malware. In USENIX Security, 2012.

[8] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and
C. Kruegel. Disclosure: Detecting Botnet Command
and Control Servers Through Large-scale NetFlow
Analysis. In ACSAC, 2012.

[9] L. Bilge, E. Kirda, K. Christopher, and M. Balduzzi.
EXPOSURE: Finding Malicious Domains Using
Passive DNS Analysis. In NDSS, 2011.

[10] J. R. Binkley and S. Singh. An Algorithm for
Anomaly-based Botnet Detection. In USENIX
SRUTI, 2006.

[11] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and
K. Salamatian. Anomaly Extraction in Backbone
Networks Using Association Rules. In IMC, 2009.

[12] M. J. Chapple, N. Chawla, and A. Striegel.
Authentication Anomaly Detection: A Case Study on
a Virtual Private Network. In ACM MineNet, 2007.

[13] H. Choi, H. Lee, H. Lee, and H. Kim. Botnet
Detection by Monitoring Group Activities in DNS
Traffic. In IEEE CIT, 2007.

[14] E. Cooke, F. Jahanian, and D. McPherson. The
Zombie Roundup: Understanding, Detecting, and
Disrupting Botnets. In USENIX SRUTI, 2005.

[15] G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and
K. Cho. Extracting Hidden Anomalies Using Sketch
and non Gaussian Multiresolution Statistical
Detection Procedures. In ACM SIGCOMM LSAD,
2007.

[16] J. François, S. Wang, R. State, and T. Engel.
BotTrack: Tracking Botnets Using NetFlow and
PageRank. In IFIP TC 6 Networking Conf., 2011.

[17] F. C. Freiling, T. Holz, and G. Wicherski. Botnet
Tracking: Exploring a Root-cause Methodology to
Prevent Distributed Denial-of-service Attacks. In
ESORICS, 2005.

[18] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:
Clustering Analysis of Network Traffic for Protocol-
and Structure-independent Botnet Detection. In
USENIX Security, 2008.

[19] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee. BotHunter: Detecting Malware Infection
Through IDS-driven Dialog Correlation. In USENIX
Security, 2007.

[20] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting
Botnet Command and Control Channels in Network
Traffic. In NDSS, 2008.

[21] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling.
Measuring and Detecting Fast-Flux Service Networks.
In NDSS, 2008.

[22] J. P. John, A. Moshchuk, S. D. Gribble, and
A. Krishnamurthy. Studying Spamming Botnets Using
Botlab. In USENIX NSDI, 2009.

[23] I. T. Jolliffe. Principal Component Analysis.
Springer-Verlag, 1986.

[24] A. Karasaridis, B. Rexroad, and D. Hoeflin.
Wide-scale Botnet Detection and Characterization. In
USENIX HotBots, 2007.

[25] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data. An Introduction to Cluster Analysis. Wiley,
1990.

[26] J. Levine, R. LaBella, H. Owen, D. Contis, and
B. Culver. The Use of Honeynets to Detect Exploited
Systems Across Large Enterprise Networks. In IEEE
IAW, 2003.

[27] C. Livadas, R. Walsh, D. Lapsley, and W. Strayer.
Using Machine Learning Techniques to Identify
Botnet Traffic. In IEEE LCN, 2006.

[28] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker.
Beyond Blacklists: Learning to Detect Malicious Web
Sites from Suspicious URLs. In ACM SIGKDD KDD,
2009.

[29] J. Nazario and T. Holz. As the Net Churns: Fast-flux
Botnet Observations. In MALWARE, 2008.

[30] E. Passerini, R. Paleari, L. Martignoni, and
D. Bruschi. FluXOR: Detecting and Monitoring
Fast-Flux Service Networks. In DIMVA, 2008.

[31] R. Perdisci, I. Corona, D. Dagon, and W. Lee.
Detecting Malicious Flux Service Networks through
Passive Analysis of Recursive DNS Traces. In ACSAC,
2009.

[32] A. Ramachandran and N. Feamster. Understanding
the Network-level Behavior of Spammers. In ACM
SIGCOMM, 2006.

[33] A. Sperotto, R. Sadre, and A. Pras. Anomaly
Characterization in Flow-Based Traffic Time Series. In
IEEE IPOM, 2008.

[34] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and
G. Vigna. Your Botnet is My Botnet: Analysis of a
Botnet Takeover. In ACM CCS, 2009.

[35] W. Strayer, R. Walsh, C. Livadas, and D. Lapsley.
Detecting Botnets with Tight Command and Control.
In IEEE LCN, 2006.

[36] R. Villamaŕın-Salomón and J. C. Brustoloni. Bayesian
Bot Detection Based on DNS Traffic Similarity. In
ACM SAC, 2009.

[37] A. Wagner and B. Plattner. Entropy Based Worm and
Anomaly Detection in Fast IP Networks. In IEEE
WETICE, 2005.

[38] S. Yadav, A. K. K. Reddy, A. N. Reddy, and
S. Ranjan. Detecting Algorithmically Generated
Malicious Domain Names. In IMC, 2010.

[39] S. Yadav and A. N. Reddy. Winning With DNS
Failures: Strategies for Faster Botnet Detection. In
SECURECOMM, 2011.

[40] T. Yen and M. K. Reiter. Traffic Aggregation for
Malware Detection. In DIMVA, 2008.

[41] J. Zhang, R. Berthier, W. Rhee, M. Bailey, P. Pal,
F. Jahanian, and W. H. Sanders. Safeguarding
Academic Accounts and Resources with the University
Credential Abuse Auditing System. In DSN, 2012.

