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Logistic Regression

2

Probabilistic 
Interpretation



𝑀𝑎𝑥𝜃 𝐿 𝜃 = 𝑃 𝑌 𝑋; 𝜃 =ෑ
𝑖=1

𝑛

𝑃[𝑦 𝑖 |𝑥 𝑖 ; 𝜃]

Maximum Likelihood Estimation (MLE)

Given training data  𝑋 = 𝑥(1), … , 𝑥(𝑛) with 

labels  Y = 𝑦(1), … , 𝑦(𝑛)

What is the likelihood of training data for parameter 𝜃?

Define likelihood function

Assumption: training points are independent

General probabilistic method for classifier training
3

Find model parameter 𝜃 with Maximum Likelihood



Gradient Descent for Logistic 
Regression

𝐽 𝜽 =
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Outline

• Evaluation of classifiers

– Metrics

– ROC curves

• Linear Discriminant Analysis (LDA)

• Lab (logistic regression, LDA, kNN)

• Feature selection

– Wrapper

– Filter

– Embedded methods
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Confusion Matrix
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Accuracy and Error
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Confusion Matrix

8True Positive Rate



Precision & Recall
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F-Score
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A Word of Caution
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Logistic Regression 

Probabilistic model ℎ𝜃 𝑥 = P 𝑦 = 1 𝑥; 𝜃
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Classifiers can be tuned

• Logistic regression sets by default the 
threshold at 0.5 for classifying positive and 
negative instances

• Some applications have strict constraints on 
false positives (or other metrics)

– Example: very low false positives in security (spam)

• Solution: choose different threshold

T

T

Higher T, lower FP
Lower T,  lower FN
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ROC Curves

• Receiver Operating Characteristic (ROC)
• Determine operating point (e.g., by fixing false positive rate)

Perfect 
classification

Random 
guessing

Better

One classifier for 
fixed threshold
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Performance Depends on Threshold
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ROC Curve
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ROC Curve
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ROC Curve
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ROC Curves

• Another useful metric: Area Under the Curve (AUC)
• The closest to 1, the better! 

AUC 
(Area Under 
the Curve)
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Area Under the ROC Curve
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ROC Example
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ROC Example
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Goals of classification

• Produce models with high accuracy / low error

• Generalize well

– Avoid overfitting (perform well on training set, but 
poorly on testing data)

• Find the simplest model that produces 
reasonable accuracy

– Occam’s Razor

• Reduce both bias and variance!
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How Overfitting Affects Prediction

How can we avoid over-fitting without having 
access to testing data?
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Cross Validation

- Use other metrics as appropriate (precision, recall)

- Estimate and reduce average error during multiple 
runs by randomly choosing validation set

- Compute final error on testing set

Tune 
params

• Improves model generalization
• Avoids overfitting

- Test set

- Randomly split training set into training 
and validation, e.g., 66% - 33%

Validation 
set
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Cross Validation

• CV can be used for

– Hyper-parameter selection

– Comparing different models and features

• 1. k-fold Cross-Validation

– Split data into k partitions of equal size

Compute error metrics in each fold
Average error across folds
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Cross Validation

• 2. Leave-one-out CV (LOOCV)

– k=n (validation set only one point)

• Pros: Less bias

• Cons: More expensive to implement, higher variance 

• Recommendation: perform k-fold CV with k=5 or k=10
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Outline

• Evaluation of classifiers

– Metrics

– ROC curves

• Linear Discriminant Analysis (LDA)

• Lab (logistic regression, LDA, kNN)

• Feature selection

– Wrapper

– Filter

– Embedded methods
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LDA

• Classify to one of k classes

• Logistic regression computes directly

– P 𝑌 = 1 𝑋 = 𝑥

– Assume sigmoid function

• LDA uses Bayes Theorem to estimate it

– P 𝑌 = 𝑘 𝑋 = 𝑥 =
P 𝑋 = 𝑥 𝑌 = 𝑘 P[𝑌=𝑘]

P[𝑋=𝑥]

– Let 𝜋𝑘 = P[𝑌 = 𝑘] be the prior probability of class 
k and 𝑓𝑘 𝑥 = P 𝑋 = 𝑥 𝑌 = 𝑘
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LDA

Assume 𝑓𝑘 𝑥 is Gaussian!
Unidimensional case (d=1)

Assumption: 𝜎1 = …𝜎𝑘 = σ
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Gaussian Distribution
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LDA decision boundary

Pick class k to maximize 

Example: 𝑘 = 2, 𝜋1 = 𝜋2
Classify as class 1 if 𝑥 >

𝜇1+𝜇2

2𝜎

True decision boundary Estimated decision boundary
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LDA in practice

Given training data 𝑥(𝑖), 𝑦(𝑖) , 𝑖 = 1, … , 𝑛, 𝑦(𝑖) ∈ {1, … , 𝐾}

1. Estimate mean 
and variance

2. Estimate prior

Given testing point 𝑥, predict k that maximizes:

𝑥(𝑖)

(𝑥(𝑖)− Ƹ𝜇𝑘)
2

33



Acknowledgements

• Slides made using resources from:

– Andrew Ng

– Eric Eaton

– David Sontag

• Thanks!

34


