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Logistic Regression
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Maximum Likelihood Estimation (MLE)

Given training data X = {x(l), ...,x(")} with

labels Y = {y®, ..., y(W}

What is the likelihood of training data for parameter 67?

Define likelihood function

n
Maxy 1(6) = PIYIX;01 = | [ Py©1x®; 0]
=1

Assumption: training points are independent

Find model parameter 6 wit

General probabilistic met

n Maximum Likelihood

hod for classifier training



Gradient Descent for Logistic
Regression

T

J(0) = — Z {y(i) log h..e(ﬂir{:?"}) + (1 — y(”) log (1 — h.g(:cmm -

=1

Want ngn J(0)

* |nitialize @

° Repeat until convergence (simultaneous update forj =0 ... d)

(90 < 9() == OJZ (hg (ilt(l)) — y(i))
=1

Ol Z (hg (a:(i)> — y(i)) azg?)
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Outline

Evaluation of classifiers
— Metrics
— ROC curves

Linear Discriminant Analysis (LDA)
Lab (logistic regression, LDA, kNN)

~eature selection

— Wrapper

— Filter

— Embedded methods



Confusion Matrix

Given a dataset of PP positive instances and /N negative instances:

Predicted Class
Yes No

Yes TP FN

FP TN

=
O

Actual Class



Accuracy and Error

Given a dataset of P positive instances and /V negative instances:

Predicted Class Predicted Class
Yes No Yes No
A N 7
4]
5 Yes TP FN g Yes TP
S E
> No FP TN & No N)
< <
TP +TN | TP +TN
accuracy = error = —
B FP+ FN

P+ N



Confusion Matrix

Given a dataset of P positive instances and N negative instances:

Predicted Class
Yes No

I'P+1TN
P+ N

Yes

accuracy =

No

Actual Class

Imagine using classifier to identify positive cases (i.e., for
information retrieval)

. 1I'P " TP
recision = recall = — —
I TP+ FP TP+ FN
Probability that classifier Probability that actual class is
predicts positive correctly predicted correctly

True Positive Rate 8



Precision & Recall

Precision Recall

* the fraction of positive * fraction of positive
predictions that are correct instances that are identified

* P(is pos|predicted pos) * P(predicted pos|is pos)
o TP | TP

precision = = P recall = TP N

* You can get high recall (but low precision) by only predicting positive
* Recall is a non-decreasing function of the # positive predictions

* Typically, precision decreases as either the number of positive
predictions or recall increases

* Precision & recall are widely used in information retrieval



F-Score

* Combined measure of precision/recall tradeoff

precision X recall

F1 — 2 X -
precision + recall
— This is the harmonic mean of precision and recall
— In the F, measure, precision and recall are weighted evenly

— Can also have biased weightings that emphasize either
precision or recall more (F, = 2 x recall; F},. = 2 x precision)

* Limitations:
— F-measure can exaggerate performance if balance
between precision and recall is incorrect for application

* Don’t typically know balance ahead of time
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A Word of Caution

* Consider binary classifiers A, B, C:

Predictions

A . B : C .

1 0 1 0 1 0

09 0108 0 [078 O
0Of O 0 |01 0.1]0.12 0.1

Clearly A is useless, since it always predicts 1
B is slightly better than C

— less probability mass wasted on the off-diagonals

But, here are the performance metrics:

Metric A B C
Accuracy | 0.9 0.9 0.88
Precision 0.9 1.0 1.0

Recall 1.0 0.888 0.8667

F-score | 0.947 0.941 0.9286
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Logistic Regression

-

he(x) =g (0Tx)
1

g(z)

g(z) = g

| | Fal
"

OTx should be large negative
values for negative instances

Probabilistic model hy(,y = Ply = 1]x; 6]
— Predicty =1if hg(ax) > 0.5
— Predicty = 0if hg(x) < 0.5

OTx should be large positive
values for positive instances
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Classifiers can be tuned

* Logistic regression sets by default the
threshold at 0.5 for classifying positive and
negative instances

 Some applications have strict constraints on
false positives (or other metrics)

— Example: very low false positives in security (spam)

e Solution: choose different threshold

Probabilistic model hg(,) = P[y = 1|x; 6]

— Predicty = 1if hg(x)
— Predicty =0 if hg(x)

Higher T, lower FP

>
< Lower T, lower FN

T
T




ROC Curves

Perfect
classification ROC Curve
<@
One classifier for
Q- fixed threshold
o -
1]
S o | \
z ° Better .
2 A Random
O = .
2 o 7 guessing
2 .
N
o
©
o .
I [ I | I

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

* Receiver Operating Characteristic (ROC)
* Determine operating point (e.g., by fixing false positive rate)



Performance Depends on Threshold

Predict positive if P(y = 1 | x) > 6, otherwise negative
* Number of TPs and FPs depend on threshold &
* As we vary 6, we get different (TPR, FPR) points

Example ROC Plot

1.0 .
D) T
= o054 /
2 / :
- [l —— Learner L1
0.257 / ------- Leamer 1.2
A Learner L3
T Random
0+ . . ,
0 0.25 0.5 0.75 1.0

False positive rate
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ROC Curve

1.0

0.75 1

True positive rate

“Ideal”

learner

) Random model is
- —  always diagonal
" line in ROC space

— Learner L1

------- Learner 1.2
Learner 1.3

......... Random

05 075 1.0
False positive rate
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ROC Curve

1.0
L
S
5 0.757
.z
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L3 dominates L2 L2 dominates L3
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ROC Curve

L1 always dominates ‘

LOT— [2and L3 |

. ,.
E
5 0.75-
2
2z
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False positive rate



ROC Curves

ROC Curve

< ]

@

o
g AUC -
5 oo ]
2 (Area Under
2
e 3 the Curve)
E

b

o

©

o

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

e Another useful metric: Area Under the Curve (AUC)
* The closest to 1, the better!
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Area Under the ROC Curve

Can take area under the ROC curve to summarize
performance as a single number

— Be cautious when you see only AUC reported without a
ROC curve; AUC can hide performance issues

random classification

AUC (AUC=0.5) Same AUC, very different
performance

0 0.1 oz 0.3 o4 los 06 07 08 oo 1

FPR



ROC Example

iy plyi =1 x3) h(x; | #=0) hix; | # =0.5) hix; |0 =1)
1 1 0.9 1 1 0
2 1 0.8 1 1 0
3 1 0.7 1 1 0
4 1 0.6 1 1 0
5 1 0.5 1 1 0
6 0 0.4 1 0 0
7 0 0.3 1 0 0
g8 0 0.2 1 0 0
9 0 0.1 1 0 0

TPR=5/5=1 IPR=5/5=1 IPR=0/5=0
| =9 FPR=4/A=1 FPR=0/4=0 FPR=0/4=0

TPR

FPR



ROC Example

iy plyi =1 x5) h(x;i | #=0) h(xi | # = 0.5) hixi|0=1)

1 1 0.9 1 1 0

2 1 0.8 1 1 0

3 1 0.7 1 1 0

4 1 0.6 1 1 0

5 1 0.2 1 0 0

6 0 0.6 1 1 0

7 0 0.3 1 () 0

8 0 0.2 1 0 0

9 0 0.1 1 0 0
TPR=5/5=1 1TPR=4/5=08 TPR=0/5=

1 FPR=4/4=1 FPR=1/4=025 FPR=0/4=0
TPR

FPR



Goals of classification

Produce models with high accuracy / low error
Generalize well

— Avoid overfitting (perform well on training set, but
poorly on testing data)

Find the simplest model that produces
reasonable accuracy

— Occam’s Razor

Reduce both bias and variance!



How Overfitting Affects Prediction

Predictive

Error

Underfitting Overfitting

Error on Test Data

Error on Training Data

Ll

Model Complexity

ldeal Range
for Model Complexity

How can we avoid over-fitting without having
access to testing data?
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Cross Validation

N
c
2

run 3
run 4
run5

Data: labeled instances, e.g. emails marked spam/ham ¢
— Training set =
Test set )

Randomly split training set into training

Validation
set

and validation, e.g., 66% - 33% 20

Features: attribute-value pairs which characterize each :

Experimentation cycle
— Select a hypothesis f

(Tune hyperparameters on held-out or validation set) I

Estimate and reduce average error during multiple

Tune

l params

runs by randomly choosing validation set

Compute final error on testing set

Evaluation

Test
Data

— Accuracy: fraction of instances predicted correctly
Use other metrics as appropriate (precision, recall)

* |Improves model generalization
e Avoids overfitting
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Training Data

Test Data

-y

Cross Validation

15t Partition

Validation
Set

Training
Data

v

2nd Partition

Training
Data

Validation
Set

Training
Data

kth Partition

Training
Data

Validation
Set

Compute error metrics in each fold
Average error across folds

e CV can be used for

— Hyper-parameter selection

— Comparing different models and features

e 1. k-fold Cross-Validation

— Split data into k partitions of equal size



Cross Validation

123
1213

123

123

2. Leave-one-out CV (LOOCV)

— k=n (validation set only one point)

Pros: Less bias

Cons: More expensive to implement, higher variance
Recommendation: perform k-fold CV with k=5 or k=10



Outline

Evaluation of classifiers
— Metrics
— ROC curves

Linear Discriminant Analysis (LDA)
Lab (logistic regression, LDA, kNN)

~eature selection

— Wrapper

— Filter

— Embedded methods



LDA

e Classify to one of k classes

* Logistic regression computes directly
—P[Y = 1|X = «]
— Assume sigmoid function

* LDA uses Bayes Theorem to estimate it

P[X = x|Y = k|p[y=k]

—-PlY =k|X =x]| = r—

— Let m;, = P|Y = k] be the prior probability of class
kand f,(x) = P|X = x|Y = k]



LDA

Pr(Y = k|X =) = g‘*f"“(:”) .

ZI:I WIfE(I)
Assume f; (x) is Gaussian!
Unidimensional case (d=1)

1 1 ;
T) = exp | ——=(x — pp
fi(®) V2o p( Z*Tij}( H) )

1
2w

Tk

exp (—21 (r — ) )
Pe(r) = =%

Assumption: 0; = ...0, = O

1—1 T Emexp[ EL:I—;L;))'
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Gaussian Distribution

Normal Distribution

99.7% of the data are within

F’r{:bablllty' dEﬂEit'_lf' function f————————— 3 standard devistions of the mean ———————
T T — T T T T .|.|. 95% within
10 T 2standard devistions )
p=0, =02 — | 68 within
=0 - +— 1 standard —*|
(] r.!:EI‘ — deviation
i u —_—
— 0F
XL §
3
= 04
nz2
i 1= 3a = 2a M= 1] o+ a pu+ 2a u o 3a
B IR R e — BT B B B For the normal distribution, the values less than one &3
standard deviation away from the mean account for 68.27% of
The red curve iz the standsrd normal distibution the set; while two standard deviations from the mean account

for 95 45%:; and three standard deviations account for 99.73%.

Notation  |\A(u,o”)

Parameters | € & = mean (location)

o > 0 = variance (squared scale)
Support zelt
PDF ] b

g Iod

2o
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LDA decision boundary

Pick class k to maximize

M 1
Op(x) =x - — 2;2 + log(m)
Example: k = 2,1y = m,
Classify as class 1 if x > ”1;:2

I
|
|
}
0

True decision boundary Estimated decision boundary
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LDA in practice

Given training data (x(i),y(i)),i =1, ...,

1. Estimate mean
and variance

2. Estimate prior

n,y®W e{q,..,

f, =

nik 3 20

iy =k

1 K
—— > > @Oy’

k=1iy;=k

T = N /n.

Given testing point x, predict k that maximizes:

Eat

Op(x) = - -

JLk

T2

~ 2
‘Hk | l t
i 0 il

K}
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