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Logistics

HW 2 is due on Friday 02/08
Tentative schedule of HW on class website
Project proposal: due Feb 21

— 1 page description of problem you will solve,
dataset, and ML algorithms

— Individual project

— Project template and potential ideas are on Piazza
Project milestone: due March 21

— 2 page description on progress

Project report at the end of semester and project
presentations in class (10 minute per project)



Outline

Logistic regression

— Classification based on probability
Maximum Likelihood Estimation (MLE)

— Application to Logistic Regression
Gradient Descent for Logistic Regression
Evaluation of classifiers

— Metrics
— ROC curves



Linear classifiers

A linear classifier has the form

hg(x) = f(0"x)

Properties

_ h(x)=0

h(x) <0

A A
A A,
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h(x) >0

- (0y,04,...,04) = model parameters
— Decision boundary is a hyper-plane
— Perceptron is a special case with f = sign

Pros

— Very compact model (size d)
— Perceptron is fast

Cons

— Does not work for data that is not linearly separable
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Classification based on Probability

* Instead of just predicting the class, give the probability
of the instance being that class

— i.e., learn p(y | x)

« Comparison to perceptron:

— Perceptron doesn’t produce probability estimate

* Recall that:
0 < p(event) <1

p(event) + p(—event) = 1

..............................




Logistic regression

* Takes a probabilistic approach to learning
discriminative functions (i.e., a classifier)

* hg(x) should give p(y = 1| «;8) | Can’tjustuse linear
regression with a
— Want 0 < hg(x) <1 threshold

* Logistic regression model:

}19(33) =g (GTCB) Logistic / Siﬁmoid Function
1 g9(2)
9(z) = 1 +e—*

0.5 -
1
]’LG(CB) : 1_|_ e_ng / | | |




LR is a Linear Classifier!

* Predicty = 1 if:
Ply = 1[x; 6] > Ply = 0]x; 6]

Ply = 1|x; 6] > %
1 1

1+e0'x 2

e Equivalent to:

Logistic Regression is a linear classifier!




Logistic Regression

ol
ho(x) = g(0Tx) g9(2)
1
g(z) = — 0.5
—6
0Tz should be large negative OTx should be large positive
values for negative instances values for positive instances

* Assume a threshold and...
— Predicty = 1if hg(ax) > 0.5
— Predicty =01if hg(x) < 0.5

Logistic Regression is a linear classifier!




Logistic Regression
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Logistic Regression Objective

* Can’tjust use squared loss as in linear regression:
: T )
1 (7) NOMS
7o) = 1 (hg (:c ) _y )
>

— Using the logistic regression model

1
he(w) - 1 —+ €_9Tm

results in a non-convex optimization‘




Maximum Likelihood Estimation (MLE)

Given training data X = {x(l), ...,x(")} with
labels Y = {y®, ..., y(W}

What is the likelihood of training data for parameter 67?

Define likelihood function
Maxg L(0) = P[Y|X; 0]

Assumption: training points are independent

n
L) = | [Py©®;0)
=1

General probabilistic method for classifier training
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Log Likelihood

* Max likelihood is equivalent to maximizing log
of likelihood

n
L) = | [Py®x®,6)
=1

n
logL(0) = 2 log P[y®]xW), 9]
i=1

* They both have the same maximum 6, g



MLE for Logistic Regression

p(ylx,8) = hg (x)J’(]_ — hy (x))l—y

OnLE = arg 11151}{ Z log -;_)(-_z,'('é'} | z(): 0)
=1

= arg max Zl y®Dlog hy (X(i)) +(1—y®)log (1 — hg (x))

* Substitute in model, and take negative to yield

Logistic regression objective:

min J(0)

n

J(0) = — Z [y(i) log he (V) + ( — y(i)) log (1 — hg(::c(i)))]

1=1




Objective for Logistic Regression

n

7(0) = =Y [y logho(2) + (1 = ) log (1~ ho ()

i=1
* Cost of a single instance:

| N —log(he(x)) ify=1
cost (he(z),y) = { —log(1 — he(x)) ify=0

* Can re-write objective function as

T

J(0) = Z cost (hg(m(i))jy(":))

1=1
\ J
|

Cross-entropy loss
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Intuition

s N —IOg(f?,g(:E)) ify=1
cost (he(®), y) = { —log(1 — hg(x)) ify=20

Aside: Recall the plot of log(z)

0.5 1

054




Intuition

| B —log(hg(x)) ify=1
cost (he(x),y) = { —log(1 — he(x)) ify=0

fy=1
* Cost =0 if prediction is correct

ify=1 * As hg(x) — 0, cost — oo

* Captures intuition that larger
cost mistakes should get larger
penalties

— e.g., predict hg(x) =0,buty=1
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Intuition

| B —log(hg(x)) ify=1
cost (ho(x), y) = { —log(1 — hg(x)) ify=0

Ify=0

* Cost =0 if prediction is correct
Ify=1 * As (1 —hg(x)) — 0, cost — o0
Ify=0

* Captures intuition that larger
cost mistakes should get larger
penalties
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Gradient Descent for Logistic
Regression

T

J(@) = — Z {y{i) log h.g(ilj{:i}) + (1 — y{‘i)) log (1 — h.g(:cmm -

i=1 n
j@©) ==Y ¢
=1

Want 11]5111 J(0)

* |nitialize @
* Repeat until convergence

9, simultaneous update
0j < 0; _aagj J(Q) forj=0..d




Computing Gradients

* Derivative of sigmoid

- 9() == 9' (D) = 7 = 9D — 9(2)

e Derivative of hypothesis
— he(x) = g(0"x) = g(6;x; + Yksj OrXk)

dhg(x) _ag(6Tx)
— 669]- =%, % = g(0Tx)(1 — g(67x))x;

* Derivation of (;
aC; . | | |
— a_g] = }/'(l) hg(lxi) g(HTx(l)) (1 _ g(HTX(l))) xj(l) i

(1= y®) iy 807 @) (1 - g(67x) )

— (y(i) — hy (xa))) xj(i>




Gradient Descent for Logistic
Regression

T

J(0) = — Z {y(i) log h..e(ﬂir{:?"}) + (1 — y(”) log (1 — h.g(:cmm -

=1

Want ngn J(0)

* |nitialize @

° Repeat until convergence (simultaneous update forj =0 ... d)

(90 < 9() == OJZ (hg (ilt(l)) — y(i))
=1

Ol Z (hg (a:(i)> — y(i)) azg?)

=




Gradient Descent for Logistic

Regression
Want 11311 J(0)
* |nitialize @
° Repeat until Convergence (simultaneous update forj =0 ... d)

Oo < 6y — Oéz (h,g (az('i)) — y(i)>
=1

n

0l Z (hg <£B(i)) — y(i)) :1357)

| 1= A

This looks IDENTICAL to Linear Regression!

However, the form of the model is very different:

1
]19(33) — 1+ €—9Ta:




MLE

Probabilistic method to train classification or
regression models

Find model parameter that maximizes likelihood
function

n
Maxy 1(6) = PIYIX; 0] = | | Py 1x®; )
=1

Equivalent to maximize log likelihood function

Interesting property

— MLE for linear regression has exactly the same
solution as the MSE minimizer (least-square
solution)



Regularized Logistic Regression

n

J(0) ==Y |y log ho() + (1 - y) log (1 — ho(a)

1=1

* We can regularize logistic regression exactly as before:
d
']reg;ula.rized(e) — ](9) + A Z 6’?
j=1
= J(0) + M6p.ql5

L2 regularization
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Classifier Evaluation

* Classification is a supervised learning problem
— Prediction is binary or multi-class

e Classification techniques

— Linear classifiers
* Perceptron (online or batch mode)
 Logistic regression (probabilistic interpretation)

— Instance learners

* KNN: need to store entire training data

* Cross-validation should be used for parameter
selection and estimation of model error



Evaluation of classifiers

Given: labeled training data X,Y = { x® y®}"

* Assumes each x~ D(X)

X, Y
{

Train the model:

model € classifier.train(X, Y ) HJ

X —>

model

—> Yprediction

Apply the model to new data:

* Given: new unlabeled instance x ~ D(X)

Y prediction & Model.predict(x)
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Classification Metrics

# correct predictions

accuracy = _
# test instances

# incorrect predictions

error = 1 — accuracy = :
# test instances

* Training set accuracy and error
* Testing set accuracy and error
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Confusion Matrix

Given a dataset of P positive instances and N negative instances:

Predicted Class
Yes No

I'P+1TN
P+ N

Yes

accuracy =

No

Actual Class

Imagine using classifier to identify positive cases (i.e., for
information retrieval)

. 1P " TP
recision = recall = — —
I TP+ FP TP+ FN
Probability that classifier Probability that actual class is

predicts positive correctly predicted correctly
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Why One Metric is Not Enough

Assume that in your training data, Spam email is 1% of data, and
Ham email is 99% of data

* Scenariol
— Have classifier always output HAM!
— What is the accuracy? 99%

* Scenario 2

— Predict one SPAM email as SPAM, all other emails as
legitimate

— What is the precision? 100%
* Scenario 3

— Output always SPAM!

— What is the recall? 100%
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Confusion Matrix

Given a dataset of P positive instances and N negative instances:

Predicted Class
Yes No

I'P+1TN
P+ N

Yes

accuracy =

No

Actual Class

Imagine using classifier to identify positive cases (i.e., for
information retrieval)

o TP " 1P
IeC1S101l — recall = — —
! TP+ FP TP + FN

F1 score = 2 PrecisionxRecall

Precision+Recall
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