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Review

* Gradient descent is an efficient algorithm for
optimization and training LR

— The most widely used algorithm in ML!
* More complex regression models exist
— Polynomial, spline regression

* Regularization is general method to reduce
model complexity and avoid overfitting
— Add penalty to loss function
— Ridge and Lasso regression



Outline

Cross validation for parameter selection
Linear Classification
Perceptron

— Online and batch perceptron

Logistic regression

— Classification based on probability

Evaluation of classifiers
— Metrics
— ROC curves



Classification
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« Suppose we are given a training set of N observations discrete

{xW ., x™}and {y®, ..., y™}, x® € R4,

» Classification problem is to estimate f(x) from this data such that

F(x®) = y®
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* Algorithm (to classify point x)
— Find k nearest points to x (according to distance metric)
— Perform majority voting to predict class of x
* Properties -
— Does not learn any model in training! —
— Instance learner (needs all data at testing time)



Overfitting!  Training data Testing data
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How to choose k (hyper-parameter)?
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Training data Testing data
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How to choose k (hyper-parameter)?
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Training data Testing data
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How to choose k (hyper-parameter)?



Cross-validation

As K increases:
« Classification boundary becomes smoother
* Training error can increase

Choose (learn) K by cross-validation
« Split training data into training and validation
* Hold out validation data and measure error on this

k=1 Mgl Validation error K7 liclly Validation Error
set 1 set 1 setl set 1
Train Validation Error Validation Error
set 10 set 10 set 10

Avg Validation Error

Avg Validation Error




Cross Validation

Training Data 15t Partition 2nd Partition kth Partition
Validation Training
e _ Set Data Training
Validation L. Data
Training Set
R B Data Training Validation
Data Set
Test Data
e k-fold CV

— Split training data into k partitions (folds) of equal size

— Pick the optimal value of hyper-parameter according
to error metric averaged over all folds



History of Perceptrons

They were popularised by Frank Rosenblatt in the early 1960’s.
— They appeared to have a very powerful learning algorithm.
— Lots of grand claims were made for what they could learn to do.

In 1969, Minsky and Papert published a book called “Perceptrons” that
analysed what they could do and showed their limitations.

— Many people thought these limitations applied to all neural network
models.

The perceptron learning procedure is still widely used today for tasks
with enormous feature vectors that contain many millions of features.

They are the basic building blocks for
Deep Neural Networks
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Linear classifiers

* A hyperplane partitions space into 2 half-spaces
d+1

— Defined by the normal vector 8 € R
* @ is orthogonal to any vector lying

6
on the hyperplane /

— Assumed to pass through the origin
* This is because we incorporated bias term f intoitby x5 =1

* Consider classification with +1, -1 labels ...
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Linear classifiers

* Linear classifiers: represent decision boundary by hyperplane
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h(z) = sign(0Tx) where sign(z) = { —1 i i < 8

—Notethat: 8T >0 — y = +1
Ol <0 —= y=-—1

All the points x on the hyperplane satisfy: 87x = 0
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Example: Spam

« Imagine 3 features (spam is “positive” class):

1. free (number of occurrences of “free”)
2. money (occurrences of “money”)
3. BIAS (intercept, always has value 1)

“free money” |pnoney :

X 0
BIAS BIAS : =3
free free 4
money : 2

Ezi X&é%}>‘0 i”!SFV\“A!!!

d
2 xl-Hl-

i=0
(1)(=3) +
(D4)  +
(D(2)  +
=3
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The Perceptron
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h(x) = sign(6Tx) where sign(z) :{ _1 gi;g

* The perceptron uses the following update rule each
time it receives a new training instance (a’:(?’)? y“‘))

1 - - i
06 — > (;19 (::c("”)) _ y(%)) IE)

| ]
either 2 or -2

— If the prediction matches the label, make no change

— Otherwise, adjust #
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The Perceptron

* The perceptron uses the following update rule each
time it receives a new training instance ("), y(9))

0.0, — 1 (h,g (a;w) - y<*i>) 20
2

L ]
Y
either 2 or -2

* Re-write as (‘9] “— 9] — U(%)J‘E%) (only upon misclassification)

Perceptron Rule: If z:(?) is misclassified, do @ « @ + y(@')m(@')
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Geometric interpretation
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[Slide by Rong Jin]
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Online Perceptron

Let 6 < |0,0,...,0]
Repeat:
Receive training example (&9, y(9)
if y®eTx® < () // prediction is incorrect
0 — 6+ yxl)

Online learning — the learning mode where the model update is
performed each time a single observation is received

Batch learning — the learning mode where the model update is
performed after observing the entire training set




Batch Perceptron

T

Given training data {(m('i'),-y(i))}i:l
Let @ < [0,0,....0

Repeat:
Let A «+ [0,0,...,0]

if y(i)HTx(i) <0 // prediction for ith instance is incorrect
A — A+ yDg®
A A/Tl // compute average update
00+ A
Until ||All2 < €

Guaranteed to find separating hyperplane if
data is linearly separable
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Linear separability
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* For linearly separable data, can prove bounds on perceptron
error (depends on how well separated the data is)



Perceptron Limitations

s dependent on starting point
t could take many steps for convergence

Perceptron can overfit

— Move the decision boundary for every example

Which of this is
optimal?




Improving the Perceptron

The Perceptron produces many €@‘s during training
The standard Perceptron simply uses the final # at test time
— This may sometimes not be a good idea!

— Some other @ may be correct on 1,000 consecutive examples,
but one mistake ruins it!

Idea: Use a combination of multiple perceptrons
— (i.e., neural networks!)
Idea: Use the intermediate #'s

— Voted Perceptron: vote on predictions of the intermediate é's
— Averaged Perceptron: average the intermediate ‘s
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Linear classifiers

A linear classifier has the form

hg(x) = f(0"x)

Properties

_ h(x)=0

h(x) <0

A A
A A,

A AAA 4

AadA
A AA

h(x) >0

- (0y,04,...,04) = model parameters
— Perceptron is a special case with f = sign

Pros

— Very compact model (size d)
— Perceptron is fast

Cons

— Does not work for data that is not linearly separable



Classification based on Probability

* Instead of just predicting the class, give the probability
of the instance being that class

— i.e., learn p(y | x)

« Comparison to perceptron:

— Perceptron doesn’t produce probability estimate

* Recall that:
0 < p(event) <1

p(event) + p(—event) = 1

..............................
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Bozxplots of income as a function of default status.



Why not linear regression?
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.
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Logistic regression

* Takes a probabilistic approach to learning
discriminative functions (i.e., a classifier)

* hg(x) should give p(y = 1| «;8) | Can’tjustuse linear
regression with a
— Want 0 < hg(x) <1 threshold

* Logistic regression model:

}19(33) =g (GTCB) Logistic / Siﬁmoid Function
1 g9(2)
9(z) = 1 +e—*

0.5 -
1
]’LG(CB) : 1_|_ e_ng / | | |
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Interpretation of Model Output

he(x) = estimated p(y =1 | x;0)

Example: Cancer diagnosis from tumor size

T — Wiy - 1
| zy | | tumorSize

hg(:r) — 0.7
— Tell patient that 70% chance of tumor being malignant

Note that: p(y =0 |x;0)+ply=1]|x;08) =1

Therefore, p(y =0 | x;0)=1—ply=1]| x;0)
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