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Review

• Gradient descent is an efficient algorithm for 
optimization and training LR

– The most widely used algorithm in ML!

• More complex regression models exist

– Polynomial, spline regression

• Regularization is general method to reduce 
model complexity and avoid overfitting

– Add penalty to loss function

– Ridge and Lasso regression
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Outline

• Cross validation for parameter selection

• Linear Classification

• Perceptron

– Online and batch perceptron

• Logistic regression

– Classification based on probability

• Evaluation of classifiers

– Metrics

– ROC curves
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Binary or 
discrete
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𝑥 1 , … , 𝑥 𝑛 and 𝑦 1 , … , 𝑦 𝑛 , 𝑥(𝑖) ∈ 𝑅𝑑 , 𝑦(𝑖) ∈ {−1, 1}

𝑓 𝑥(𝑖) = 𝑦(𝑖)



kNN
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• Algorithm (to classify point 𝑥)
– Find 𝑘 nearest points to 𝑥 (according to distance metric)
– Perform majority voting to predict class of 𝑥

• Properties
– Does not learn any model in training!
– Instance learner (needs all data at testing time)
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How to choose k (hyper-parameter)?

Overfitting!
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How to choose k (hyper-parameter)?
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How to choose k (hyper-parameter)?



Cross-validation
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Cross Validation

• k-fold CV

– Split training data into k partitions (folds) of equal size

– Pick the optimal value of hyper-parameter according 
to error metric averaged over all folds
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History of Perceptrons

They are the basic building blocks for 
Deep Neural Networks
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Linear classifiers
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Linear classifiers
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All the points x on the hyperplane satisfy: 𝜃𝑇𝑥 = 0



Example: Spam
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The Perceptron
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The Perceptron
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Geometric interpretation

𝜽𝑡
𝜽𝑡+1
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Online Perceptron
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T𝑦(𝑖)𝜃𝑇𝑥(𝑖)



Batch Perceptron

Guaranteed to find separating hyperplane if 
data is linearly separable

19

𝑦(𝑖)𝜃𝑇𝑥(𝑖)



• For linearly separable data, can prove bounds on perceptron 
error (depends on how well separated the data is)
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Perceptron Limitations

• Is dependent on starting point

• It could take many steps for convergence

• Perceptron can overfit

– Move the decision boundary for every example

Which of this is 
optimal?
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Improving the Perceptron
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• Properties
– (𝜃0, 𝜃1, … , 𝜃𝑑) = model parameters
– Perceptron is a special case with 𝑓 = 𝑠𝑖𝑔𝑛

• Pros
– Very compact model (size d)
– Perceptron is fast

• Cons
– Does not work for data that is not linearly separable

ℎ𝜃 𝑥 = 𝑓(𝜃𝑇𝑥)

ℎ 𝑥 = 0

ℎ 𝑥 < 0 ℎ 𝑥 > 0
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Classification based on Probability
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Example
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Why not linear regression?
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Logistic regression
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Interpretation of Model Output
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