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Outline

• Practical issues in Linear Regression

– Outliers

– Categorical variables

• Lab Linear Regression

• Gradient descent

– Efficient algorithm for optimizing loss function

– Training Linear Regression with Gradient Descent

– Comparison with closed-form solution
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Simple Linear Regression

ෝ𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙

Hypothesis: ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

Residual

𝜽𝟏 = 𝚫𝐲/𝚫𝐱

Slope

𝜃0 Intercept

Loss: MSE=
1

𝑛
σ𝑖=1
𝑛 ℎ𝜃 𝑥(𝑖) − 𝑦(𝑖)
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𝑥(𝑖), 𝑦(𝑖)



• Dataset 𝑥(𝑖)∈ 𝑅, 𝑦(𝑖) ∈ 𝑅, ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

• 𝐽 𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖)
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MSE / Loss

• Solution of min loss

– 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥

– 𝜃1 =
σ (𝑥 𝑖 − ҧ𝑥)(𝑦(𝑖) −ത𝑦)

σ 𝑥(𝑖)− ҧ𝑥
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Simple Linear Regression

ҧ𝑥 =
σ𝑖=1
𝑛 𝑥(𝑖)

𝑛

ത𝑦 =
σ𝑖=1
𝑛 𝑦(𝑖)

𝑛
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Variance of x Co-variance of x and y



Multiple Linear Regression

• Dataset: 𝑥
(𝑖)

∈ 𝑅𝑑 , 𝑦
𝑖
∈ 𝑅

• Hypothesis ℎ𝜃 𝑥 = 𝜃𝑇𝑥

• MSE =
1

𝑛
σ𝑖=1
𝑛 𝜃𝑇𝑥(𝑖) − 𝑦(𝑖)

2
Loss / cost
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Feature standardization/normalization

• Goal is to have individual features on the 
same scale 

• Is a pre-processing step in most learning 
algorithms

• Necessary for linear models and Gradient 
Descent 

• Different options:
– Feature standardization

– Feature min-max rescaling

– Mean normalization
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Outliers

• Dashed model is without outlier point
• Linear regression is not resilient to outliers!
• Outliers can be eliminated based on residual value

• Other techniques for outlier detection
7



Categorical variables

• Predict credit card balance

– Age

– Income

– Number of cards

– Credit limit

– Credit rating

• Categorical variables

– Student (Yes/No) 

– State (50 different levels)
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Indicator Variables

• Binary (two-level) variable
– Add new feature 𝑥𝑗 = 1 if student and 0 otherwise

• Multi-level variable
– State: 50 values

– 𝑥𝑀𝐴 = 1 if State = MA and 0, otherwise

– 𝑥𝑁𝑌 = 1 if State = NY and 0, otherwise

– …

– How many indicator variables are needed?

• Disadvantages: data becomes too sparse for large 
number of levels
– Will discuss feature selection later in class
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Lab example
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Simple LR
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Residual plot

Estimated responses 12



Simple LR

Coef not zero!

𝑅𝑆𝐸 = 𝑀𝑆𝐸
𝑅2 measures linear relationship between X and Y 

(equal to correlation coef for simple LR) 13



Multiple LR
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What Strategy to Use?
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Follow the Slope
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Follow the direction of steepest descent!



How to optimize 𝐽(𝜃)? 
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How to optimize 𝐽(𝜃)? 

Different starting point
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Gradient Descent
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• Gradient = slope of line tangent to curve
• Function decreases faster in negative direction of gradient
• Larger learning rate => larger step



Gradient Descent
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Gradient Descent
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• As you approach the minimum, the slope gets smaller, and GD 
will take smaller steps

• It converges to local minimum (which is global minimum for 
convex functions)!



Gradient Descent
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• What happens when 𝜃 reaches a local minimum?
• The slope is 0, and gradient descent converges!



GD Converges to Local Minimum

Solution: start from multiple random locations
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GD for Simple Linear Regression

• 𝐽 𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖)
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•
𝜕𝐽(𝜃)

𝜕𝜃0
=

2

𝑛
σ𝑖=1
𝑛 (𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖))

•
𝜕𝐽(𝜃)

𝜕𝜃1
=

2

𝑛
σ𝑖=1
𝑛 (𝜃0 + 𝜃1𝑥

𝑖 − 𝑦(𝑖)) 𝑥(𝑖)
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Update of each parameter component 
depends on all training data



GD for Multiple Linear Regression

1

𝑛

1

𝑛

2

𝑛

2

𝑛

25



GD for Linear Regression

2

𝑛
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Can also bound number of iterations

𝜃𝑛𝑒𝑤 − 𝜃𝑜𝑙𝑑 < ϵ or

iterations == MAX_ITER



GD Example
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GD Example
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GD Example
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GD Example
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GD Example
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GD Example
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GD Example

33



GD Example
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GD Example
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Choosing learning rate
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Feature Scaling
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Issues with Gradient Descent

• Might get stuck in local optimum and not 
converge to global optimum

– Restart from multiple initial points

• Only works with differentiable loss functions

• Small or large gradients

– Feature scaling helps

• Tune learning rate

– Can use line search for determining optimal 
learning rate
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Review

• In practice several techniques can help 
generate more robust models

– Outlier removal

– Feature scaling 

• Gradient descent is an efficient algorithm for 
optimization and training LR

– The most widely used algorithm in ML!

– Much faster than using closed-form solution

– Main issues with Gradient Descent is convergence 
and getting stuck in local optima
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