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Supervised Learning: Regression
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Learning Challenges
• Goal

– Classify well new testing data  
– Model generalizes well to new testing data

• Variance
– Amount by which model would change if we 

estimated it using a different training data set
– More complex models result in higher variance

• Bias
– Error introduced by approximating a real-life problem 

by a much simpler model
– E.g., assume linear model (linear regression), then 

error is high
– More complex models result in lower bias

Bias-Variance tradeoff
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Bias-Variance Tradeoff

Model underfits 
the data

Model overfits the 
data
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Outline
• Probability review

– Conditional probabilities, Bayes Theorem

• Linear algebra review
– Matrix and vector operations

• Linear regression
– Simple linear regression

– Optimal simple linear regression model

– Correlation coefficient

– Lab
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Resources

Probability

• Review notes from Stanford's machine 
learning class

• Sam Roweis's probability review

Linear algebra

• Review notes from Stanford's machine 
learning class

• Sam Roweis's linear algebra review
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http://cs229.stanford.edu/section/cs229-linalg.pdf
http://cs.nyu.edu/~dsontag/courses/ml12/notes/probx.pdf
http://cs229.stanford.edu/section/cs229-prob.pdf
http://cs.nyu.edu/~dsontag/courses/ml12/notes/linear_algebra.pdf


Conditional Probability

Def:   Events A and B are independent if and only if  
Pr[ A ∩ B ] = Pr[A] ∙ Pr[B]

If 𝐴 and 𝐵 are independent

Pr[𝐴|𝐵] =
Pr 𝐴 ∩ 𝐵

Pr[𝐵]
=
Pr 𝐴]Pr[𝐵

Pr[𝐵]
= Pr[A]
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Inference from Conditional Probability
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Inference from Conditional Probability
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Inference from Conditional Probability 

11
Bayes Theorem



Bayes’ Rule

12



Vectors and matrices

• Vector in Rn is an ordered 
set of n real numbers.

– e.g. v = (1,6,3,4) is in R4

– A column vector:

– A row vector:

• m-by-n matrix is an object 
in Rmxn with m rows and n 
columns, each entry filled 
with a (typically) real 
number:
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Matrix multiplication

• Matrix product:
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We will use upper case letters for matrices. The elements 

are referred by Ai,j. 

e.g.
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Matrix transpose

Transpose: You can think of it as 
– “flipping” the rows and columns 

OR 
– “reflecting” vector/matrix on line 
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e.g.

A is a symmetric matrix if 𝐴 = 𝐴𝑇
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Inverse of a matrix

• Inverse of a square matrix A, denoted by A-1 is 
the unique matrix s.t.

– AA-1 =A-1A=I (identity matrix)

• If A-1 and B-1 exist, then 

– (AB)-1 = B-1A-1,

– (AT)-1 = (A-1)T

• For diagonal matrices 
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Linear independence
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(𝑐1, 𝑐2)=(0,0), i.e. the columns 
are linearly independent.

• A set of vectors is linearly independent if none of them can 
be written as a linear combination of the others.

• Vectors v1,…,vk are linearly independent if c1v1+…+ckvk = 0 
implies c1=…=ck=0

• Otherwise they are linearly

dependent
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Linearly dependent
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Rank of a Matrix

• rank(A) (the rank of a m-by-n matrix A) is

The maximal number of linearly independent columns

The maximal number of linearly independent rows

• If A is n by m, then
– rank(A)<= min(m,n)

• Examples 2 1 3
0 5 2
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System of linear equations

Matrix formulation

If A has an inverse, solution is 𝑥 = 𝐴−1𝑏
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Linear regression

• One of the most widely used techniques

• Fundamental to many complex models

– Generalized Linear Models

– Logistic regression

– Neural networks

– Deep learning

• Easy to understand and interpret

• Efficient to solve in closed form

• Efficient practical algorithm (gradient descent)

20



Linear regression

Features

Response 
variables
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Simple Linear Regression: 1 predictor



Income Prediction

Linear Regression with 2 predictors
Multiple Linear Regression
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Hypothesis: linear model

ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

Simple linear regression
Regression model is a line with 2 parameters: 𝜃0, 𝜃1
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Least squares Linear Regression

1

𝑛

Mean Square 
Error (MSE)
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Terminology and Metrics

• Residuals
– Difference between predicted values and actual 

values

– Predicted value for example i is: ො𝑦(𝑖)= ℎ𝜃 𝑥(𝑖)

– 𝑅(𝑖) = 𝑦(𝑖) − ො𝑦(𝑖) = |𝑦 𝑖 − (𝜃0 + 𝜃1𝑥
(𝑖))|

• Residual Sum of Squares (RSS)

– 𝑅𝑆𝑆 = σ[𝑅
(𝑖)
]2 = σ 𝑦 𝑖 − (𝜃0 + 𝜃1𝑥

(𝑖))
2

• Mean Square Error (MSE)

–𝑀𝑆𝐸 =
1

𝑛
σ[𝑅

(𝑖)
]2 = 

1

n
σ 𝑦 𝑖 − (𝜃0 + 𝜃1𝑥

(𝑖))
2
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Interpretation

ෝ𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙

ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

Residual

𝜽𝟏 = 𝚫𝐲/𝚫𝐱

Slope

𝜃0 Intercept

MSE=
1

𝑛
σ𝑖=1
𝑛 ℎ𝜃 𝑥(𝑖) − 𝑦(𝑖)

2
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Intuition on MSE
1

𝑛

27
Fix 𝜃0 =0



Intuition on MSE
1

𝑛
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Intuition on MSE

1

𝑛
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MSE function
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Relation between ℎ and 𝐽
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Relation between ℎ and 𝐽
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Relation between ℎ and 𝐽
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Relation between ℎ and 𝐽

How to find optimal model 
parameters 𝜃 to minimize MSE 𝐽?
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Simple linear regression

ҧ𝑥 =
σ𝑖=1
𝑛 𝑥(𝑖)

𝑛

ത𝑦 =
σ𝑖=1
𝑛 𝑦(𝑖)

𝑛
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• Dataset 𝑥(𝑖)∈ 𝑅, 𝑦(𝑖) ∈ 𝑅, ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

• 𝐽 𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖)
2

MSE / Loss

𝜕𝐽 𝜃

𝜕𝜃0
= 
2

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖) = 0

𝜕𝐽(𝜃)

𝜕𝜃1
= 
2

𝑛
σ𝑖=1
𝑛 𝑥(𝑖) 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖) = 0

• Solution of min loss

– 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥

– 𝜃1 =
σ (𝑥 𝑖 − ҧ𝑥)(𝑦(𝑖) −ത𝑦)

σ 𝑥(𝑖)− ҧ𝑥
2



How Well Does the Model Fit?
• Correlation between feature and response

– Pearson’s correlation coefficient

• Measures linear dependence between x and y

• Positive coefficient implies positive correlation
– The closer to 1 the coefficient is, the stronger the correlation

• Negative coefficient implies negative correlation
– The closer to -1 the the coefficient is, the stronger the correlation
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Correlation Coefficient
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Positive/Negative Correlation
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Positive 
Correlation

Negative 
Correlation
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Review linear regression

• Simple linear regression: one dimension

• Multiple linear regression: multiple 
dimensions

• Minimize cost (loss) function

– MSE: average of squared residuals

• Can derive closed-form solution for simple LR

– 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥

– 𝜃1 =
σ (𝑥 𝑖 − ҧ𝑥)(𝑦(𝑖) −ത𝑦)

σ 𝑥(𝑖)− ҧ𝑥
2
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