
DS 4400

Alina Oprea

Associate Professor, CCIS

Northeastern University

April 4 2019

Machine Learning and Data Mining I

Logistics

• Final project presentations

– Thursday, April 11

– Tuesday, April 16 in ISEC 655

– 8 minute slot – 5 min presentation and 3 min
questions

• Final report due on Tuesday, April 23

– Template in Piazza

– Schedule on Piazza

2

Training

• Training data 𝑥(1) , y(1), … 𝑥(𝑁) , y(N)

• One training example 𝑥(𝑖) = 𝑥1
(𝑖)
, … 𝑥𝑑

(𝑖)
, label 𝑦(𝑖)

• One forward pass through the network
– Compute prediction ො𝑦(𝑖)

• Loss function for one example

– 𝐿 ො𝑦, 𝑦 = −[1 − 𝑦 log 1 − ො𝑦 + 𝑦 log ො𝑦]

• Loss function for training data

– 𝐽 𝑊,𝑏 =
1

𝑁
σ𝑖 𝐿 (ො𝑦

(𝑖), 𝑦(𝑖)) + 𝜆𝑅(𝑊, 𝑏)

3

Cross-entropy loss

Mini-batch Gradient Descent

• Initialization
– For all layers ℓ

• Set 𝑊 [ℓ], 𝑏[ℓ] at random

• Backpropagation
– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)
• For all batches b of size B with training examples 𝑥(𝑖𝑏), 𝑦(𝑖𝑏)

–𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿(ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑊 ℓ

– 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿(ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑏 ℓ

4

Given training set 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁
Initialize all parameters 𝑊 [ℓ], 𝑏[ℓ] randomly, for all layers ℓ
Loop

Training NN with Backpropagation

5

Update weights via gradient step

• 𝑊𝑖𝑗
[ℓ]

= 𝑊𝑖𝑗
[ℓ]
− 𝛼

Δ𝑖𝑗
[ℓ]

𝑁

• Similar for 𝑏𝑖𝑗
[ℓ]

Until weights converge or maximum number of epochs is reached

EPOCH

Gradient Descent Variants

6

Training Neural Networks

• Randomly initialize weights

• Implement forward propagation to get prediction
ෝ𝑦𝑖 for any training instance 𝑥𝑖

• Compute loss function 𝐿 ො𝑦𝑖 , 𝑦𝑖
• Implement backpropagation to compute partial

derivatives
𝜕𝐿(ො𝑦(𝑖) ,𝑦(𝑖))

𝜕𝑊 ℓ and
𝜕𝐿(ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ

• Use gradient descent with backpropagation to
compute parameter values that optimize loss

• Can be applied to both feed-forward and
convolutional nets

7

Neural Network Architectures

8

Feed-Forward Networks
• Neurons from each layer

connect to neurons from
next layer

Convolutional Networks
• Includes convolution layer

for feature reduction
• Learns hierarchical

representations

Recurrent Networks
• Keep hidden state
• Have cycles in

computational graph

Outline

• Recurrent Neural Networks (RNNs)
– One-to-one, one-to-many, many-to-one, many-to-

many

– Blog by Andrej Karpathy
• http://karpathy.github.io/2015/05/21/rnn-

effectiveness/

• Unsupervised learning

• Dimensionality reduction
– PCA

• Clustering

9

RNN Architectures

10

RNN Architectures

11

RNN Architectures

12

RNN Architectures

13

Recurrent Neural Network

14

RNN: Computational Graph

15

RNN: Computational Graph

16

One-to-Many

17

Many-to-Many

18

Many-to-One

19

Example: Language Model

20

Example: Language Model

21

Example: Language Model

22

Training RNNs

23

Training RNNs

24

Writing poetry

25

Writing poetry

26

Writing geometry proofs

27

Writing geometry proofs

28

Example RNN: LSTM

29

Capture long-term dependencies by using
“memory cells”

LSTM

30

Hidden
State

Memory Cell

LSTM vs Standard RNN

31

RNN

LSTM

Summary RNNs

• RNNs maintain state and have flexible design

– One-to-many, many-to-one, many-to-many

• Applicable to sequential data

• LSTM maintains both short-term and long-
term memory

• Better and simpler architectures are a topic of
active research

32

Unsupervised Learning

33

Unsupervised Learning

• Different learning tasks

• Dimensionality reduction
– Project the data to lower dimensional space

– Example: PCA (Principal Component Analysis)

• Feature learning
– Find feature representations

– Example: Autoencoders

• Clustering
– Group similar data points into clusters

– Example: k-means, hierarchical clustering

34

Supervised vs Unsupervised Learning

35

Standard metrics
for evaluation

Difficult to evaluate

How Can we Visualize High-
Dimensional Data?

36

Data Visualization

37

Principal Component Analysis

38

The Principal Components

39

2D Gaussian Data

40

1st PCA Axis

41

2nd PCA Axis

42

PCA Algorithm

43

Σ𝑥 = 𝜆𝑥

PCA

44

PCA

45

PCA

46

Visualizing data

47

PCA for image compression

d=1 d=2 d=4 d=8

d=16 d=32 d=64 d=100
Original
Image

48

Summary: PCA

• PCA creates a lower-dimensional feature
representation
– Linear transformation

• Can be used for visualization

• Can be used with supervised on unsupervised
learning
– Very common to use classification after PCA

transformation

• Main drawback
– No interpretability of resulting features

49

Clustering

• Goal: Automatically segment data into groups
of similar points

• Question: When and why would we want to
do this?

• Useful for:
– Automatically organizing data

– Understanding hidden structure in data and data
distribution

– Detect similar points in data and generate
representative samples

50

Clustering Examples

• Social networks
– Facebook user group according to their interests and

profiles

• Image search
– Retrieve similar images to input image

• NLP
– Topic discovery in articles

• Medicine
– Patients with similar disease and symptoms

• Cyber security
– Machine with same malware infection
– New attack has no label

51

Setup

d

< 𝑥𝑛,1,… , 𝑥𝑛,𝑑 >

Assignment from each point to cluster index
52

What is a good distance function?

Partition this data into k groups

53
Euclidean distance: 𝑑 𝑥, 𝑦 = √෍

𝑗=1

𝑑

𝑥𝑗 − 𝑦𝑗
2

K means Algorithm

• Fix a number of desired clusters k

• Key insight: describe each cluster by its mean
value (called cluster representative)

• Algorithm
– Select k cluster means at random

– Assign points to “closest cluster”

– Re-compute cluster means based on new
assignment

– Refine assignment iteratively until convergence

54

Example: Start

55

56

Example: Iteration 1

57

Example: Iteration 2

58

Example: Iteration 3

59

Example: Iteration 4

60

Example: Iteration 5

Acknowledgements

• Slides made using resources from:

– Yann LeCun

– Andrew Ng

– Eric Eaton

– David Sontag

– Andrew Moore

• Thanks!

