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Logistics

• Final project presentations

– Thursday, April 11

– Tuesday, April 16 in ISEC 655

– 8 minute slot – 5 min presentation and 3 min 
questions

• Final report due on Tuesday, April 23

– Template in Piazza

– Schedule on Piazza
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Training

• Training data 𝑥(1) , y(1), … 𝑥(𝑁) , y(N)

• One training example 𝑥(𝑖) = 𝑥1
(𝑖)
, … 𝑥𝑑

(𝑖)
, label 𝑦(𝑖)

• One forward pass through the network
– Compute prediction ො𝑦(𝑖)

• Loss function for one example

– 𝐿 ො𝑦, 𝑦 = −[ 1 − 𝑦 log 1 − ො𝑦 + 𝑦 log ො𝑦]

• Loss function for training data

– 𝐽 𝑊,𝑏 =
1

𝑁
σ𝑖 𝐿 ( ො𝑦

(𝑖), 𝑦(𝑖)) + 𝜆𝑅(𝑊, 𝑏)
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Cross-entropy loss



Mini-batch Gradient Descent

• Initialization
– For all layers ℓ

• Set 𝑊 [ℓ], 𝑏[ℓ] at random

• Backpropagation
– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)
• For all batches b of size B with training examples 𝑥(𝑖𝑏), 𝑦(𝑖𝑏)

–𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿( ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑊 ℓ

– 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿( ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑏 ℓ
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Given training set 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁
Initialize all parameters 𝑊 [ℓ], 𝑏[ℓ] randomly, for all layers ℓ
Loop 

Training NN with Backpropagation

5

Update weights via gradient step

• 𝑊𝑖𝑗
[ℓ]

= 𝑊𝑖𝑗
[ℓ]
− 𝛼

Δ𝑖𝑗
[ℓ]

𝑁

• Similar for 𝑏𝑖𝑗
[ℓ]

Until weights converge or maximum number of epochs is reached

EPOCH



Gradient Descent Variants
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Training Neural Networks

• Randomly initialize weights

• Implement forward propagation to get prediction 
ෝ𝑦𝑖 for any training instance 𝑥𝑖

• Compute loss function 𝐿 ො𝑦𝑖 , 𝑦𝑖
• Implement backpropagation to compute partial 

derivatives 
𝜕𝐿( ො𝑦(𝑖) ,𝑦(𝑖))

𝜕𝑊 ℓ and
𝜕𝐿( ො𝑦(𝑖),𝑦(𝑖))

𝜕𝑏 ℓ

• Use gradient descent with backpropagation to 
compute parameter values that optimize loss

• Can be applied to both feed-forward and 
convolutional nets
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Neural Network Architectures
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Feed-Forward Networks
• Neurons from each layer 

connect to neurons from 
next layer

Convolutional Networks
• Includes convolution layer 

for feature reduction
• Learns hierarchical 

representations

Recurrent Networks
• Keep hidden state
• Have cycles in 

computational graph



Outline

• Recurrent Neural Networks (RNNs)
– One-to-one, one-to-many, many-to-one, many-to-

many

– Blog by Andrej Karpathy
• http://karpathy.github.io/2015/05/21/rnn-

effectiveness/

• Unsupervised learning

• Dimensionality reduction
– PCA 

• Clustering
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RNN Architectures
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RNN Architectures
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RNN Architectures
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RNN Architectures
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Recurrent Neural Network
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RNN: Computational Graph
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RNN: Computational Graph
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One-to-Many
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Many-to-Many
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Many-to-One
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Example: Language Model
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Example: Language Model
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Example: Language Model
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Training RNNs
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Training RNNs
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Writing poetry
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Writing poetry
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Writing geometry proofs
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Writing geometry proofs
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Example RNN: LSTM
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Capture long-term dependencies by using 
“memory cells”



LSTM
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Hidden 
State

Memory Cell



LSTM vs Standard RNN
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RNN

LSTM



Summary RNNs

• RNNs maintain state and have flexible design

– One-to-many, many-to-one, many-to-many

• Applicable to sequential data

• LSTM maintains both short-term and long-
term memory

• Better and simpler architectures are a topic of 
active research 
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Unsupervised Learning
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Unsupervised Learning

• Different learning tasks

• Dimensionality reduction
– Project the data to lower dimensional space

– Example: PCA (Principal Component Analysis)

• Feature learning
– Find feature representations

– Example: Autoencoders

• Clustering
– Group similar data points into clusters

– Example: k-means, hierarchical clustering
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Supervised vs Unsupervised Learning
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Standard metrics 
for evaluation

Difficult to evaluate



How Can we Visualize High-
Dimensional Data?
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Data Visualization
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Principal Component Analysis
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The Principal Components
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2D Gaussian Data
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1st PCA Axis
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2nd PCA Axis
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PCA Algorithm
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Σ𝑥 = 𝜆𝑥



PCA
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PCA
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PCA
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Visualizing data
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PCA for image compression

d=1 d=2 d=4 d=8

d=16 d=32 d=64 d=100
Original 
Image
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Summary: PCA

• PCA creates a lower-dimensional feature 
representation
– Linear transformation

• Can be used for visualization

• Can be used with supervised on unsupervised 
learning
– Very common to use classification after PCA 

transformation

• Main drawback
– No interpretability of resulting features
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Clustering

• Goal: Automatically segment data into groups 
of similar points

• Question: When and why would we want to 
do this?

• Useful for:
– Automatically organizing data

– Understanding hidden structure in data and data 
distribution

– Detect similar points in data  and generate 
representative samples
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Clustering Examples

• Social networks
– Facebook user group according to their interests and 

profiles

• Image search
– Retrieve similar images to input image

• NLP
– Topic discovery in articles

• Medicine
– Patients with similar disease and symptoms

• Cyber security
– Machine with same malware infection 
– New attack has no label
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Setup

d

< 𝑥𝑛,1,… , 𝑥𝑛,𝑑 >

Assignment from each point to cluster index
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What is a good distance function?

Partition this data into k groups
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Euclidean distance: 𝑑 𝑥, 𝑦 = √෍

𝑗=1

𝑑

𝑥𝑗 − 𝑦𝑗
2



K means Algorithm

• Fix a number of desired clusters k

• Key insight: describe each cluster by its mean 
value (called cluster representative)

• Algorithm
– Select k cluster means at random

– Assign points to “closest cluster”

– Re-compute cluster means based on new 
assignment

– Refine assignment iteratively until convergence
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Example: Start
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Example: Iteration 1
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Example: Iteration 2
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Example: Iteration 3
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Example: Iteration 4
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Example: Iteration 5
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