DS 4400

Machine Learning and Data Mining |

Alina Oprea
Associate Professor, CCIS
Northeastern University

March 21 2019

Review Feed-Forward Neural Networks

Simplest architecture of NN

Neurons from one layer are connected to neurons from
next layer

— Input layer has feature space dimension

— Output layer has number of classes

— Hidden layers use linear operations, followed by non-linear
activation function

— Multi-Layer Perceptron (MLP): fully connected layers
Activation functions

— Sigmoid for binary classification in last layer
— Softmax for multi-class classification in last layer
— RelLU for hidden layers

Forward propagation is the computation of the network
output given an input

Back propagation is the training of a network
— Determine weights and biases at every layer

FFNN Architectures

Hidden
layer 1 Hidden
\ layer 2

Output
layer

— (1)

— 4(2)

* Input and Output Layers are completely specified
by the problem domain

* Inthe Hidden Layers, number of neurons in Layer
i+1 is always smaller than number of neurons in
Layer i

Two Layers

def init_model():
start_time = time.time()

print{ “Compiling Model™)

model = Sequential()

model.add(Dense(56@, input_dim=784)) .
model . add(Activation('relu')) > Layer 1

model.add(Dense(388))
model.add(Activation('relu ")) Layer 2

v

model.add(Dense(18))
model.add(Activation('softmax "))

v

Output Softmax Layer

rms = RMSprop()
model.compile(loss='categorical_crossentropy’, optimizer=rms, metrics=['gccuracy'])

print(“Model finished"+format(time.time() - start_time))
return model

Model Parameters

model.summary()

Results

Outline

* Convolutional Neural Networks
— Convolution layer
— Max pooling layer
— Strides, padding
— Parameter counting

 Examples of famous architectures
— LeNet 5, AlexNet, VGG16

e Lab

Neural Network Architectures

Feed-Forward Networks

* Neurons from each layer
connect to neurons from
next layer

Deep Feed Forward (DFF)

Convolutional Networks

* Includes convolution layer
for feature reduction

* Learns hierarchical
representations

Il O A@‘mf
PP O AV
“Nap O ~ M%.g‘?
N NG V’%”'&

Recurrent Networks

* Keep hidden state

* Have cycles in
computational graph

0NN

W Sesid

(| ‘\II\",

Convolutional Neural Networks

First strong results

Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks

for Large Vocabulary Speech Recognition

George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Deep Neural
Network

-t t 1
Imagenet classification with deep convolutional : i b
neural networks s
Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

\ /2 1 F—3
\//, _/_i AN

AN
S— .
N >

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012, Reproduced with permission.

Convolutional Nets

Photo by Lane Mcintosh. Copyright C5231n 2017.

self-driving cars

- Object recognition

- Steering angle prediction

- Assist drivers in making
decisions

No errors

A white teddy bear sitting in A man in a baseball
the grass uniform throwing a ball

A cat sitting on a
suitcase on the floor

A man riding a wave on
top of a surfboard

- Image captioning

10

Convolutional Nets

e Particular type of Feed-Forward Neural Nets
— Invented by [LeCun 89

* Applicable to data with natural grid topology
— Time series
— Images

* Use convolutions on at least one layer

— Convolution is a linear operation that uses local
information

— Also use pooling operation

— Used for dimensionality reduction and learning
hierarchical feature representations

Convolutional Nets

RELU RELU
CONV CONV

7 |
—
L
o
|
=
L
o

RELU RELU

CONV CONV

CONV CONV

N w £g 2
-..-I-.-n-.
........-.
AR
...I..-.-.
add AASENEAD
HAAREOOEHNEN
= =L DL Bvis T
— [PR W TR N
——=[0 1] 1] P
(1Y 0 01 N 4) 6 QO
UEERINENAN
o S R N A
— (AR NN \ TR
—[OMVE'] T PR
.|VPV—- MEEE'EH%;%@ﬂyw

5

12

Convolutional Nets

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

/ .
RelLU
e.q.6
5x5x3
32 filters

CONV,

A

V.

D |

28

CONV,

RelLU
e.q. 10
5x5x6
filters

A

.

24

CONV,

RelLU

13

Convolutions

A closer look at spatial dimensions:

7

7X7 input (spatially)

assume 3x3 filter

=> 5x5 output

14

Example

01 1
213
Filter

191 25

37143

Output

Convolutions with stride

7X7 input (spatially)
assume 3x3 filter
applied with stride 2

7 7 7

=> 3x3 output!

16

Convolutions with stride

7

7X7 input (spatially) _

assume 3xa3 filter doesn’t fit!

applied with stride 3? cannot apply 3x3 filter on

7 7x7 input with stride 3.
N
Output size:
= (N - F) / stride +1
N eg.N=7,F=3:
F stride 1=>(7-3)/1+1=5

(
stride 2 => (7-3)/2+1=3
stride 3 => (7 -3)/3 + 1 =2.33:\

17

Padding

In practice: Common to zero pad the border

0

0

0

0

0

o | o | o | o O

e.g. input 7x7
3x3 filter, applied with stride 3
pad with 1 pixel border => what is the output?

(recall?)
(N - F)/ stride + 1

=> 3x3 output!

18

Convolution Layer

32x32x3 image -> preserve spatial structure

7

height
32 hel9 5x5x3 filter
(7
I| Convolve the filter with the image
i.e. “slide over the image spatially,
32 width computing dot products”
3 depth

* Depth of filter always depth of input
 Computation is based only on local information

=\

w |

N\

Convolution Layer

__— 32x32x3 image
5x5x3 filter w

V
——0

"~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wlz+b

=\

activation map
___— 32x32x3 image
5x5xa3 filter

V
—0 -

convolve (slide) over all

28

W |

N\

spatial locations

28

20

N

w |

N\

N

w |

Convolution Layer

__— 32x32x3 image activation maps
~_ 5x5x3filter %
>O convolve (slide) over all

spatial locations
/ 28

1

28

=\

Second, green filter

activation maps

Convolution Layer
A

28

6 filters

21

Examples

Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 g

<
<

Output volume size: ?

(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=>76%10 =760

22

Summary: Convolution Layer

Summary. To summarize, the Conv Layer:

» Accepts a volume of size W; x H; x D,
* Requires four hyperparameters:
o Number of filters K,
o their spatial extent F,
o the stride S,
o the amount of zero padding P
* Produces a volume of size Wy x Hy x D, where
o Wo=(W, —F+2P)/S+1
o Hy = (H; — F + 2P)/S + 1 (ie. width and height are computed equally by symmetry)
o D2 =K
« With parameter sharing, it introduces F - F - D; weights per filter, for a total of (F' - F - D) - K weights
and K biases.
« |n the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of .S, and then offset by d-th bias.

23

Convolution layer: Takeaways

* Convolution is a linear operation

— Reduces parameter space of Feed-Forward Neural
Network considerably

— Capture locality of pixels in images
— Smaller filters need less parameters

— Multiple filters in each layer (computation can be
done in parallel)

* Convolutions are followed by activation
functions

— Typically RelLU

Convolutional Nets

RELU RELU
CONV CONV

7 |
—
L
o
|
=
L
o

RELU RELU

CONV CONV

CONV CONV

N w £g 2
-..-I-.-n-.
........-.
AR
...I..-.-.
add AASENEAD
HAAREOOEHNEN
= =L DL Bvis T
— [PR W TR N
——=[0 1] 1] P
(1Y 0 01 N 4) 6 QO
UEERINENAN
o S R N A
— (AR NN \ TR
—[OMVE'] T PR
.|VPV—- MEEE'EH%;%@ﬂyw

5

25

Pooling layer

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

S

|

— 112
downsampling
112

224

224

26

Single depth slice

Max Pooling

1

112 |4

3

6 | 7

max pool with 2x2 filters
and stride 2

8
21110
4

y

Accepts a volume of size W; x H; x Dy
Requires three hyperparameters:

o their spatial extent F,

o the stride S,

Produces a volume of size W, x Hy x D, where
o Wo=(W; —F)/S+1
° H2 =(H1 —F)/S-‘-l

o Dy =Dy

Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

27

Convolutional Nets

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

RELU RELU RELU RELU RELU RELU
CONVlCONV[CONV CONVl CONVlCONVl

. by

Y

car
fruck
alfplane
Ship

horse

I T ~—
15 O

e
=
==
=~
==
—.‘
=
-

- -—
=

* FClayers are usually at the end, after several
Convolutions and Pooling layers 28

LeNet 5

[LeCun et al., 1998]

Image Maps
Input

Fully Connected

/1

Convolutions
Subsampling

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

29

History

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner

152 layers
A \

\ 16.4

\ 11.7
] 22 layers I 19 Iayers

—

8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 | ILSVRC'12 | ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

Dense (1000)
t
Dense (4096)
t
Dense (4096)
Max Pooling
t
Gauss (10) 3x3 Conv (384)
t t
Dense (84) 3x3 Conv (384)
t t
Dense (120) 3x3 Conv (384)
t t
Average Pooling Max Pooling
t t
5x5 Conv (16) 5x5 Conv (256)
t t
Average Pooling Max Pooling
t t
5x5 Conv (6) 11x11 Conv (96), stride 4
t t

image (28x28)

image (224x224)

LeNet (left) and AlexNet (right)

Main differences

Deeper

Wider layers

RelLU activation

More classes in output layer
Max Pooling instead of Avg
Pooling

VGGNet

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13
(ZFNet)
->7.3% top 5 error in ILSVRC’14

FC 1000
FC 4096
FC 4096

P

A

AlexNet

parameters

| Softmax | | FC 4096]
l FC 1000 | I | FC 4006 |
l FC 4096 | | Poo |
l FC 4096 | |]
| Pool | | |
| ||]
|] |]
L | | Pool |
| Pool | |]
| ||]
|] |]
|] 1 2]
| Pool | | Poo |
|] | |
|] 1]
| Pool | | Pool |
|] 1]
|] 1]
[Pool] | Pool]
| ||]
|] |]
[Input] | Input |
VGG16 VGG19
138 million

32

Lab: Load Data

~def load_data():

print(“Loading data")
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train.astype('float32")
X_test = X_test.astype('float32")

X_train /= 255
X_test /= 255

y_train = np_utils.to_categorical(y_train, 18)
y_test = np_utils.to_categorical(y_test, 10)

X_train = np.reshape(X_train, (66eee, 28, 28, 1))

X_test = np.reshape(X_test, (1@eee, 28, 28, 1))

print(“Data Loaded")
return [X_train, X_test, y_train, y_test]

Matrix
form

33

def init_model():

Model Architecture

start_time = time.time()

print(“"Compiling Model")
model = Sequential()

model.add(layers.
model.add(layers.
model.add(layers.
model.add(layers.

model.add(layers.
model.add(layers.
.Dense(1@, activation='softmax'))

model.add(layers
model. summary ()

rms = RMSprop()

Conv2D(1@, (3, 3), activation='relu’, input_shape=(28, 28, 1)))
MaxPooling2D((2, 2)))

Conv2D(5, (3, 3), activation='relu’))

MaxPooling2D((2, 2)))

A

> Vector form
Flatten())

Dense(64, activation='relu'))

model.compile(loss="categorical_crossentropy', optimizer=rms, metrics=[‘accuracy’])

print(“Model finished"+format(time.time() - start_time))

return model

34

Model Summary

Output

max pooling2d 2 (MaxPoolingZ

flatten 1 (Flatten)

totalMemory:

2019-03-20
2019-03-20

with 11374 MB memory)

33 -

loss:

mo wD
- S

uw o
G wE

¢

w o
O
0
[Ex]
~ U0

|

=
[s2 TN]
S)

[
0
(]
[y
=

L

=]
0
=
=1 O
S |

e

L

[R A RS S
[

|
[
om0
) |

[}
0
=

P

uwo wo
[
=

(O]
0
[
=y
[ValN8]
)
Ty es

i
= 0
(]

[

>

~ 0w =u
) —

]

P

0.6465 -

(]

838024:
083693:
—>
acc:
acc:
acc:
acc:
acc:
acc:
acc:

dCC:

dCC:

11.90G1iB freeMemory:
15:23:18.
15:23:19.

11.74G1B

I tensorflow/core/common runtime/gpu/gpu device.cc:989]

physical GPU

(device:
val loss:

0
“r

3107

0.2123

name: TITAN X

- val acc: 0.

(Pascal),

9080
val acc:
val acc:
val acc:
val acc:
val acc:
val acc:
val acc:

val acc:

pci bus i

[Re]
0
0
=y

0.1 acc: 0.9802 -

raining duration:15.190229892730713
9760/10000

Network's test .

[alina@dome MNIST]S

=
(=]
[
4

1
1
1
o
1
1
1
1
1
T

Summary CNNs

Convolutional Nets are Feed-Forward Networks with at
least one convolution layer and optionally max pooling
layers

Convolutions enable dimensionality reduction

Much fewer parameters relative to Feed-Forward
Neural Networks

— Deeper networks with multiple small filters at each layer is
a trend

Fully connected layer at the end (fewer parameters)
Learn hierarchical feature representations
— Data with natural grid topology (images, maps)

Reached human-level performance in ImageNet in
2014

Acknowledgements

* Slides made using resources from:
— Yann LeCun
— Andrew Ng
— Eric Eaton
— David Sontag
— Andrew Moore

* Thanks!

