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Logistics

~eedback on project proposal in Gradescope
Please start working on your projects!

Project Milestone due on March 25
— 2-3 pages describing progress so far
— Any encountered challenges

Project Presentations will be last 2 classes
— April 11 and 16

Exam on Thursday, March 28

— Review on Tuesday, March 26
— Office hours on Wednesday, March 27

HW4 will be out at the end of the week




Outline

Review SVM
Review traditional classifiers

Deep Learning
— Motivation
— Goals

Deep Learning as representation learning
Categories of neural networks
Feed-Forward Neural Networks



Review Naive Bayes

Density Estimators can estimate joint probability
distribution from data

Risk of overfitting and curse of dimensionality
Naive Bayes assumes that features are
independent given labels

— Reduces the complexity of density estimation

— Even though the assumption is not always true, Naive
Bayes works well in practice

Applications: text classification with bag-of-words
representation

— Naive Bayes becomes a linear classifier

Generative model



Recall:

Linear classifiers

* Linear classifiers: represent decision boundary by hyperplane

" 6
01

9(1

All the points x on the hyperplane satisfy: 67x = 0

h(x) = sign(0Tx) where sign(z) = {

1 ifz>0
—1 iftz<0

—Notethat: T >0 — y = +1

OTx <0 — y=-—1




Separating hyperplane

For all training

y®D (8, + glei) 5. dec(zi)) >0 data x®,y®),
i €{1,..,n}




From separating hyperplane to
classifier

| | T
Training data x(, ..., x(™ with x(® = (xil)' ""x‘(ll))

Labels are from 2 classes: y) € {—1,1}
Let O, ..., 84 (will be learned) such that:

yD (0, + Hlei) + e deg)) >0

Classifier
f(z) =sign(0y + 0,z + -+ 0424) = sign(0'z)
Classify new test point x’

— If f(x) > 0 predicty’=1
— Otherwise predicty’'= —1



Support Vectors (informally)

X,
* Support vectors = points “closest” to hyperplane
* If support vectors change, classifier changes

* If other points change, no effect on classifier



Maximum margin classifier

| | T
» Training data x™), ..., x(™ with x(® = (xil)’ ""x‘(ll))

* Labels are from 2 classes: y; € {—1,1}

maximize M
y () (60 + Hlxii) + - dec(zi)) > M Vi
l6l], = 1

|

N , Each point is on the
Normalization constraint

right side of hyper-
plane at distance > M



Support vector classifier

* Allow for small number of mistakes on training
data

e Obtain a more robust model

max M
yO (6 + 616" + - 04x) = M(1 — & )vi
16|, = 1 |
€; > OJZiEi —C Slack
|

l

Error Budget (Hyper-parameter)




Properties

e Maximum margin classifier
— Classifier of maximum margin
— For linearly separable data

e Support vector classifier

— Allows some slack and sets a total error budget
(hyper-parameter)

* For both, final classifier on a point is a linear
combination of inner product of point with
support vectors

— Efficient to evaluate



Kernels

e Support vector classifier
—h(2) =0+ Yicca; <z,x® >
=0y + Dics i Zj=1 ijj(i) function!
— Sis set of support vectors /
— Replace with h(z) = 6y + X;cc ;K (2, xV)
 Whatis a kernel?

— Function that characterizes similarity between 2
observations

— K(a,b) =< a,b > = };a;b; linear kernel!
— The closer the points, the larger the kernel
* Intuition

— The closest support vectors to the point play larger role in
classification

Any kernel
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Kernels

Linear kernels

—K(a,b) =< a,b >=);a;b,
Polynomial kernel of degree m
— K(Cl, b) = (1 —+ Zld=0 aibi )m

Radial Basis Function (RBF) kernel (or
Gaussian)

— K (a,b) = exp(—y XL o(a;—b;)?)
Support vector machine classifier
—h(z2) = 0y + Xjes @K (2, xV)
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Kernel Example

FIGURE 9.9. Left: An SVM unth a polynomial kernel of degree 3 s applied to
the non-lhinear data from Fugure 9.8, resulling in a far more appropriate decision
rule. Right: An SVM unth a radial kernel is applied. In this ezample. either kernel
is capable of capturing the decision boundary.
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Classification axes

* Linearity of decision boundary

— Linear models: logistic regression, perceptron, LDA,
SVM

— Non-linear models: kNN, decision trees, ensembles
 Generative models

— Discriminative: logistic regression, perceptron, SVM,
kNN, decision trees, ensembles

— Generative: LDA, Naive Bayes
* Training procedure
— Gradient descent: logistic regression, SVM, perceptron
— Probabilistic: LDA, Naive Bayes
— Greedy: decision trees, random forests



Comparing classifiers

Algorithm Interpretable Model size Predictive Training time | Testing time
accuracy

Logistic High Small Lower

regression

kNN Medium Large Lower No training High
LDA Medium Small Lower Low Low
Decision High Medium Lower Medium Low
trees

Ensembles Low Large High High High
Naive Bayes Medium Small Lower Medium Low
SVM Medium Small High High Low
Neural Low Large High High Low

Networks 16



Roadmap to End-of-Semester

* Deep Learning

— Motivation

— Feed-Forward Neural Networks

— Training by backpropagation

— Convolutional and Recurrent Neural Networks
* Unsupervised learning

— Principal Component Analysis (PCA)

— Feature representation (Autoencoders)

— Clustering (k-means, Hierarchical Clustering)

* Adversarial learning



History of Deep Learning

Deep Neural Network

(Pretraining)
Multi-layered m R

XOR Perceptron A
ADALINE Problem (Backpropagation)
A A
A
Perceptron
Golden Age Dark Age (“Al Winter”)
Electronic Brain

1950 1960 1970 1980 1990 2000

S. McCulloch - W. Pitts F.Rosenblatt  B. Widrow - M. Hoff D. Rumelhart - G. Hinton - R. Wiliams V. Vapnik - C. Cortes

X AND Y XORY NOT X Foward Activity —se——gp = T
| ve S 'o.'
- + o ———— —— i ——
+ 4] 2 $1°41 -1 5| - ° |
x/ Jt \'! / ! \ l ¢—— Backward Error
« Adjustable Weights » Learnable Weights and Threshold + XOR Problem + Solution to nonlinearly separable problems + Limitations of learning prior knowledge * Hierarchical feature Leaming
« Weights are not Leamned * Big computation, local optima and overfitting « Kernel function: Human Intervention
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Before 2013

# The first learning machine: the Perceptron
» Built at Cornell in 1960

# The Perceptron was a linear classifier on
top of a simple feature extractor

# The vast majority of practical applications
of ML today use glorified linear classifiers
or glorified template matching.

N
# Designing a feature extractor requires y=sign Z W E ( Y ) +5
considerable efforts by experts. = e i g )

| 10)0PJ}X] 2iNn}ea4 |

~
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Deep Learning

& The traditional model of pattern recognition (since the late 50's)

» Fixed/engineered features (or fixed kernel) + trainable
classifier

hand-crafted
Feature Extractor

“Simple” Trainable
Classifier

Trainable
Feature Extractor

Trainable
Classifier

20



Trainable Feature Hierarchy

@ Hierarchy of representations with increasing level of abstraction
@ Each stage is a kind of trainable feature transform

@ Image recognition
» Pixel —» edge — texton —» motif —» part — object

M Text
» Character - word = word group — clause — sentence — story
@ Speech
» Sample - spectral band —» sound - ... - phone - phoneme -
word
— — — —
oy | oy | - -
= . =~ -
- =3 =3 -
S = S = 5 = S =
sl g 1§ I§¢@
3 o 3 o 3 o 3
c c
- | ] - -
g0} g0} D ™
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Learning Representations

I hideden |
bt j
hidden laver
(corners and
1o |

Visible laver

(iupul pixels)

Deep Learning addresses the problem of
learning hierarchical representations
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End-to-end learning

# A hierarchy of trainable feature transforms

» Each module transforms its input representation into a higher-level
one.

» High-level features are more global and more invariant

» Low-level features are shared among categories

Trainable Trainable Trainable
Feature Feature » Classifier/ —
Transform Transform Predictor

Learned Internal Representations

# How can we make all the modules trainable and get them to learn
appropriate representations?



Deep Learning vs Traditional Learning

Chulpnl
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The Visual Cortex is Hierarchical

# The ventral (recognition) pathway in the visual cortex has multiple stages

# Retina - LGN - V1 - V2 - V4 - PIT - AIT ...
# Lots of intermediate representations

WHERE? (Motion,

Spatial Relationships)  WHAT? (Form. Color} Vot g
tor.comman

|Parietal stream) [Inferotempaoral stream]
— Categorical judgments, e
PP 6‘ G <l AIT, decision making Simple visual forms
’ < CIT edges, corners
MSTd @ K
— ey | @ 3§ PIT 100-130 fns >
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Neural Function

* Brain function (thought) occurs as the result of
the firing of neurons

* Neurons connect to each other through synapses,
which propagate action potential (electrical
impulses) by releasing neurotransmitters

— Synapses can be excitatory (potential-increasing) or
inhibitory (potential-decreasing), and have varying
activation thresholds

— Learning occurs as a result of the synapses’ plasticicity:
They exhibit long-term changes in connection strength

* There are about 10! neurons and about 1014
synapses in the human brain!
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et

BIOlOgy of 2 Neuron

Axonal arborization

Axon from another cell ’)-/

Axon e 2 '.‘-.‘.'...‘{3-,'

Synapse

Nucleus

Cell t o
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Analogy to Human Brain

Human Brain

Direction message travels

Nucleus

4

Soma
(cell body)

Myelin

Dendrites Chaaths

Axon terminals

Biological Neuron

Neuron/Unit

Weight

ONMONO,

y=F (W1 X;+W;X;+W3X3)
F(x)=max(0,x)

Artificial Neuron
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Comparison of computing power

INFORMATION CIRCA 2012 Computer Human Brain
Computation Units 10-core Xeon: 10° Gates 10 Neurons

Storage Units 10° bits RAM, 1012 bits disk 1011 neurons, 104 synapses
Cycle time 10 sec 1073 sec

Bandwidth 10° bits/sec 104 bits/sec

« Computers are way faster than neurons...

* But there are a lot more neurons than we can reasonably
model in modern digital computers, and they all fire in
parallel

* Neural networks are designed to be massively parallel
* The brain is effectively a billion times faster



Neural Networks

Origins: Algorithms that try to mimic the brain.

Very widely used in 80s and early 90s; popularity
diminished in late 90s.

Recent resurgence: State-of-the-art technique for
many applications

Artificial neural networks are not nearly as complex
or intricate as the actual brain structure
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Performance of Deep Learning

New Al methods
(deep learning)

@
O
-
©
=
. -
O
‘T
0
o

Amount of data



References

* Deep Learning book
— https://www.deeplearningbook.org/

e Stanford notes on deep learning

— http://cs229.stanford.edu/notes/cs229-notes-
deep learning.pdf

* History of Deep Learning
— https://beamandrew.github.io/deeplearning/2017

/02/23/deep learning 101 partl.html
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