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Logistics

* HW3 is due on Friday, February 22

* Project proposal due on Tuesday 02/26 on
Gradescope
— Project Title
— Problem Description
— Dataset
— Feature extraction and selection
— ML algorithms
— Metrics for evaluation

 Week of February 25
— Lecture on 02/26 taught by Lisa Friedland
— Lecture on 02/28 canceled



Review

* Ensemble learning are powerful learning methods

— Better accuracy than standard classifiers

* Bagging uses bootstrapping (with replacement),
trains T models, and averages their prediction

— Random forests vary training data and feature set at
each split
* Boosting is an ensemble of T weak learners that
emphasizes mis-predicted examples

— AdaBoost has great theoretical and experimental
performance

— Can be used with linear models or simple decision trees
(stumps, fixed-depth decision trees)



Bagging

Step 1:
Create Multiple
Data Sets

Step 2:
Build Multiple
Classifiers

Step 3:
Combine
Classifiers

Original
D Training data
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Overview of AdaBoost

G(z) = sign [Z M Gon ()]

H

Garlx)

Better classifiers will get
Mis-classified examples higher weights
get higher weights

Correct examples get

lower weights I

—_— .

—ee (rg(x)

Uniform weights oo Gy ()

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
sions of the datasef, and then combined to produce a final prediction.



Bagging vs Boosting

Bagging

Resamples data points

Weight of each classifier
is the same

Only variance reduction

VS.

Boosting

Reweights data points (modifies their
distribution)

Weight is dependent on
classifier’s accuracy

Both bias and variance reduced —
learning rule becomes more complex
with iterations



Outline

* Density Estimation
— Estimating prior and joint probabilities
— Risk of overfitting

* Naive Bayes classifier
* Application

— Document classification



Essential probability concepts

* Marginalization: P(B) = Z P(BANA =)

vevalues(A)

P(ANB)
P(B)

* Conditional Probability: P(A | B) =

P(B| A) x P(A)
P(B)

* Bayes'Rule: P(A|B) =

* Independence:
ALlB + P(AANB)=P(A)x P(B)
< P(A|B)=P(A)
ALB|C <« PAANB|C)=PA|C)xP(B|C)



Prior and Joint Probabilities

* Prior probability: degree of belief without any other
evidence

* Joint probability: matrix of combined probabilities of
a set of variables

Russell & Norvig’s Alarm Domain: (boolean Rvs)

* A world has a specific instantiation of variables:
(alarm A theft A —earthquake)

* The joint probability is given by:

alarm —alarm
P(Alarm, Theft )= [ theft 0.09 0.01
- theft 0.1 0.8




Computing Prior Probabilities

alarm —alarm

earthquake | —earthquake |earthquake —earthquake

theft

1 theft

P(alarm) = Z P(alarm A theft - = b A Earthquake = ¢)
b,e

= 0.01 +0.08 + 0.01 +0.09 = 0.19

P( theft )= Z P(Alarm = a A theft A Earthquake = ¢)

a.,e

= 0.01 +0.08 + 0.001 4 0.009 = 0.1
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The Joint Distribution

e.g., Boolean variables A, B, (

Recipe for making a joint A B c Prob
distribution of dvariables: 0 0 0 0.30
0 0 1 0.05
1. Make a truth table listing all 0 1 0 0.10
combinations of values of 0 ! ! 0.05
your variables (if there are d i z ? ETZ
Boolean variables then the " " 5 .
table will have 29rows). 1 1 1 0.10

2. For each combination of
values, say how probable it is.

3. If you subscribe to the axioms
of probability, those numbers
must sum to 1.

Jlide © Andrew Moore




Learning Joint Distributions

Step 1: Step 2:

Build a JD table for your Then, fill in each row with:
attributes in which the }5 records ma‘[chﬁ]grow
probabilities are unspecified (row) = total number of records
A B C Prob A B C Prob

0 0 0 ? 0 0 0 0.30

0 0 1 ? 0 0 1 0.05

0 al 0 ? 0 1 0 0.10

0 1 1 ? 0 1 1 0.05

1 0 0 ? 1 0 0 0.05

1 0 1 ? 1 0 1 0.10

1 1 i ? 1 1 1 0.10

Fraction of all records in which
A and B are true but C is false
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Example — Learning Joint Probability
Distribution

This Joint PD was obtained by learning from three
attributes in the UCI “Adult” Census Database [Kohavi 1995]

gender hours_worked wealth
Female v0:40.5- poor 0253122 |
rich  0.0245895 |
v1:40.5+ poor 0.0421768
rich  0.0116293 |

Male  v0:40.5- poor 0.331313 |GG
rich  0.0971295 |
v1:40.5+ poor 0.134106 [|NEGNN
rich  0.105933 [N




Density Estimation

* Qur joint distribution learner is an example of
something called Density Estimation

* A Density Estimator learns a mapping from a set of
attributes to a probability

Input
Attributes

Density
Estimator

» Probability

YYYYY




Density Estimation

Compare it against the two other major kinds of models:

Input
Attributes

Input
Attributes

Input
Attributes

YYVYYY

Classifier

Prediction of

YYYYY

Density
Estimator

> categorical
output

YYYYY

Regressor

» Probability

Prediction of

» real-valued
output
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Evaluating Density Estimators

Input
Attributes

Input
Attributes

Input
Attributes

Test-set criterion for

estimating performance

> Prediction of
> Classifier — categorical
> output

> Densit

p “CIIY > Probability
$ Estimator

> Prediction of
> Regressor — real-valued
> output

on future data

Test set
Accuracy

Test set
Accuracy
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Evaluating Density Estimators

* Given arecord x, a density estimator M can tell you
how likely the record is:

P(x | M)

* The density estimator can also tell you how likely the
dataset is:

— Under the assumption that all records were independently
generated from the Density Estimator’s JD (that is, i.i.d.)

P(xi AxaA...AX, | M) = HP(X@, | M)
‘ i=1

\

|
dataset
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Example

From the UCI repository (thanks to

* 192 records in the training set

mpg

bad
bad
bad
bad
bad
bad
bad

bad
good
bad
good
bad
good

good
bad

good
bad

e by Andrew Moore

modelyear maker

75to78
70tof4
75to78
70tof4
70to74
70to74
70tof4
75to78

70torf4
79to83
75to78
79t083
75to78
79toB3
79t083
70to74
75to78
75to78

asia
amernca
europe
amernca
america
asia
asia
amerca

amernca
amerca
america
america
amernca
amernca
america
america
europe

europe

Ross Quinlan)

mpy modelyear maker
bad 7Oto74 america
asia
europe
75to?? america
asia
europe
76tad3 america
asis
europe
good 7Otord america
asia
europe
T5to77 america
asia
europe
76to83 america
asis

eLrope

o27ss1 [
0.0255102 [}

0.0153081 ]

0153081 |
0.0255102 |}

0.0357143

0.0561224 N

Mever

Mever

0.0102041 ]

0.0308122

0.0459184 [
0.0306122 i}

0.0408163 [N

0.0357143 [

0112245 |
0.0714286 N
0.0357143 |}
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Example

From the UCI repository (thanks to Ross Quinlan)

* 192 records in the training set

mpg  modelyear maker

good
bad

et

75torf8
70tor4

asia
america

P(dataset | M

mpg  modelyear maker

bad 70to74  america 027551 |

asia 00255102

eurape  0.0153061 [

) =] P(xi| M)
1=1

— 3.4 x 107293

bad
good
good
bad
good
bad

Slide by Andrew Moore

75to78
79t083
79t083
70to74
75to78
75to78

america
america
america
america
europe
europe

ooy oameca noe 2l
asia 0.0408163 [N
europe  0.0357143 [}

76t083  america 0.112245 [
asia 0.0714286 |

europe 00357143 [l

(in this case)
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Log Probabilities

* For decent sized data sets, this product will underflow

Y

T

Fa

P(dataset | M) = | | P(x; | M)

-

1

1

* Therefore, since probabilities of datasets get so small,
we usually use log probabilities

Fat

log P(dataset

M) =log [] P(x; | M) =Y log P(x; | M)
1=1 1=1

20



Example

From the UCI repository (thanks to Ross Quinlan)

* 192 records in the training set

mpg  modelyear maker

bad 70to74 america 027551 [N

asia 00255102 [

mpg | modelyear maker

good 75tof8 asia
bad 70to74 america

europe  0.0153061 [

log P(dataset | M) Z log P(x; | M)
i=1

—466.19 (in this case)

Totorr omenca tne

bad 75to78 america

good 79t083 america asia 0.0408163 [N

good 7Y9toB3 america 0.0357143

bad |70to7f4 amerca FUroRe ) -

ggod T5to78 europe 76to83 america 0.112245 _
bad | 75to78  europe el 0.0714255 [

ewope 00357143 [

Slide by Andrew Moore



Evaluation on Test Set

Set Size Log likelihood
Training Set 196 -466.1905
Test Set 196 -614.6157

* An independent test set with 196 cars has a much
worse log-likelihood

— Actually it’s a billion quintillion quintillion quintillion
quintillion times less likely

* Density estimators can overfit...

...and the full joint density estimator is the
overfittiest of them all!

22



Overfitting

mpy  modelyear
bad 70to74
If this ever happens, the
joint PDE learns there are -

certain combinations that
are impossible

76to83

maker

america 027551 [ KK
asia 00255102 ||}

europe  0.0153061 [

america 0153061 |GGG

asia 0.0255102 |

europe  0.0357143 [}

america 0.0561224 [

asia Mever

good 70to74

europe  Mever
america 00102041 [

asia e ubeel |

log P(dataset | M) = Z log P

de hv Andrew Maora

23



Curse of Dimensionality

$2“

:I‘g‘

&1 3

X
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Pros and Cons of Density Estimators

* Pros

— Density Estimators can learn distribution of
training data

— Can compute probability for a record
— Can do inference (predict likelihood of record)
* Cons

— Can overfit to the training data and not generalize
to test data

— Curse of dimensionality

Naive Bayes classifier fixes these cons!



Bayes’ Rule

P(B | A) x P(A)
P(B)

P(A|B) =

* Exactly the process we just used

* The most important formula in
probabilistic machine learning

(Super Easy) Derivation:
P(AAB)=P(A| B) x P(B)
P(BAA)=P(B|A)x P(A)

these are the same

Just set S .. Bayes, Hs(lﬁ n ?t;‘wards

P(A | B) )4 P(B) — P(B | A) X P(A) salving a problem in the doctrine of
chances. Philosophical Transactions of
an d SOIVe vee the Royal Society of Londeon, 53:370-418
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LDA

e Classify to one of k classes

* Logistic regression computes directly
—P[Y = 1|X = x] Discriminative model

— Assume sigmoid function
* LDA uses Bayes Theorem to estimate it

P[X = x|Y = k|p[y=k]

—-PlY =k|X =x]| = T—

— Let m;, = P|Y = k] be the prior probability of class
kand f,(x) = P|X = x|Y = k]

Generative model



LDA

Pr(Y — kX — 2) — "kIKE)
( | j Zilﬂiﬁ(:ﬂ)

Assume f; (x) is Gaussian!
Unidimensional case (d=1)

1 1 ;
T) = exp | ——=(x — pp
fi(®) V2o p( Z*Tij}( H) )

1
2w

Tk

exp (—21 (r — ) )
Pe(r) = =%

Assumption: 0; = ...0, = O

1—1 T Emexp[ EL:I—;L;))'
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Naive Bayes Classifier

Idea: Use the training data to estimate
P(X|Y) and P(Y) .

Then, use Bayes rule to infer P(Y| X, ) for new data

Easy to estimate
from data Impractical, but necessary

PIY = k[P[X; = x; A~ A Xg= xqlV = k]
P[Xl — x1 JA /\Xdz xd]

P[Y =k|lX=x] =

Unnecessary, as it turns out

* Recall that estimating the joint probability distribution
P(X1,Xo, ..., Xa|Y) isnot practical

! !

29



Naive Bayes Classifier

Problem: estimating the joint PD or CPD isn’t practical

— Severely overfits, as we saw before

However, if we make the assumption that the attributes
are independent given the class Iabel estimation is easy!

P(X1,Xo,....X,|Y) = HP 1Y)

* |n other words, we assume all attrlbutes are
conditionally independent given Y

* Often this assumption is violated in practice, but more
on that later...

30



Training Nailve Bayes

Estimate P(X; | Y) and P(Y) directly from the training
data by counting!

Sky Temp Humid Wind Water | Forecast| Play?
sunny warm normal | strong warm same yes
sunny warm high strong warm same yes
rainy cold high strong warm change no
sunny warm high strong cool change yes

P(play) =7
P(Sky = sunny | play) = 7
P(Humid = high | play) = 7

P(-play) =7
P(Sky = sunny | =play) = 7

P(Humid = high | =play) = 7

N



Training Nailve Bayes

Estimate P(X, | Y) and P(Y) directly from the training
data by counting!

Sky Temp Humid Wind Water | Forecast
sunny warm normal | strong warm same
sunny warm high strong warm same
rainy cold high strong warm change
sunny warm high strong cool change
P(play) = 3/4 P(~play) = 1/4
P(Sky = sunny | play) = P(Sky = sunny | =play) = 7

P(Humid = high | play) = 7

P(Humid = high | =play) =

32



Training Nailve Bayes

Estimate P(X,; | Y) and P(Y) directly from the training

data by counting!

Forecast

sunny yes
sunn es

rain cold strong warm change
sunn

P(play) = 3/4 P(-play) = 1/4
P(Sky = sunny | play) = 1 P(Sky = sunny | =play) = 7
P(Humid = high | play) =7 P(Humid = high | =play) =7

33



Estimate P(X; | Y) and P(Y) directly from the training
data by counting!

Training Nailve Bayes

Sky Temp Humid Wind Water | Forecast Play?
sunny warm normal strong warm same yes
warm high strong same

change

high strong cool

P(play) = 3/4
P(Sky = sunny | play) = 1
P(Humid = high | play) =7

P(=play) = 1/4
P(Sky = sunny

P(Humid = high | =play) = 7

-play) = O

34



Training Nailve Bayes

Estimate P(X, | Y) and P(Y) directly from the training
data by counting!

normal

h|h

_
__yes |

P(play) = 3/4 P(=play) = 1/4
P(Sky = sunny | play) = 1 P(Sky = sunny | =play) = 0
P(Humid = high | play) = 2/3 P(Humid = high | =play) = 7

35



Training Nailve Bayes

Estimate P(X; | Y) and P(Y) directly from the training
data by counting!

Sky Temp Humid Wind Water | Forecast Play?
sunny warm normal strong warm same yes

sunn warm high strong warm same es
sunny warm high strong cool change yes
P(play) = 3/4 P(=play) = 1/4

P(Sky = sunny | play) = 1 P(Sky = sunny | =play) = 0
P(Humid = high | play) = 2/3 P(Humid = high | =play) = 1

36



Laplace Smoothing

* Notice that some probabilities estimated by counting
might be zero

— Possible overfitting!

* Fix by using Laplace smoothing:
— Adds 1 to each count

0+ 1
PX;=v|Y =k)= Co T

Z Cor + |[values( X))

v’ Evalues ( )(j )

where

— ¢, is the count of training instances with a value of v for
attribute 7 and class label k

— |values(X))| is the number of values X, can take on

37



Using the Naive Bayes Classifier

* Now, we have _
P[Y == k]P[Xl == x1 N "‘/\Xd= xd|Y == k]
P[Xl == xl N "‘/\Xd= xd]

P[Y = k|X = x]

This is constant for a given instance,
and so irrelevant to our prediction

— In practice, we use log-probabilities to prevent underflow

* To classify a new point x,

d

h(x) = argmax P(Y =k ) H PX;=u;|Y=k)

Yk :}:1

7t attribute value of x

d
— argmax log P(Y = k) +ZlogP(Xj =xz; | Y =k)
| P

Yk

38



Naive Bayes Classifier

 For each class label k
1. Estimate prior P|Y = k] from the data
2. For each value v of attribute Xj

* Estimate P[X; = v|Y = k]

* Classify a new point via:

h(x) =argmax logP(Y =k )+ Zlog P X,=x;|Y=k)
Yk P
* |n practice, the independence assumption doesn’t

often hold true, but Naive Bayes performs very well
despite it



Computing Probabilities

* NB classifier gives predictions, not probabilities, because
we ignore P(X) (the denominator in Bayes rule)

* Can produce probabilities by:

— For each possible class label 7, , compute

PY=k |X=x)=PY=k)]|]P(X;=2;|YV=k)
\ J :
I
This is the numerator of Bayes rule, and is
therefore off the true probability by a factor
of a that makes probabilities sum to 1

1
classes T
P = k| X =x)

— aisgiven by & =

— Class probability is given by
PY=k | X=x)=aP(Y = k| X =x)

40



Naive Bayes Summary

Advantages:

* Fast to train (single scan through data)

Fast to classify

|_

|_

Not sensitive to irrelevant features

andles real and discrete data
andles streaming data well

Disadvantages:

* Assumes independence of features



Test
Data:

Classes:

Training
Data:

Document Classification

e

i

ML

learning
intelligence

algorithm

planning
language
proof
intelligence”

Ay

planning
temporal

reasoning

reinforcement plan

network. .

langlace. ..

PROBLEM SETTING
Given:
* Representation of a document
* Setof classes 1,..., K

Determine:

* C(Class to which document d belongs

T
x -

T (HCI)

;
i

ISemanﬁc;I IGarb.CDII.I Multimedia

programming garbage

(Prqgrahwnjing)

semantics collection

language memory

proof... optimization
region. ..

a
-
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Text Classification: Examples

Classify news stories as World, US, Business, SciTech, Sports, etc.
Add terms to Medline abstracts (e.g. “Conscious Sedation” [E03.250])
Classify business names by industry

Classify student essays as A/B/C/D/F

Classify email as Spam/Other

Classify email to tech staff as Mac/Windows/ ...

Classify pdf files as ResearchPaper/Other

Determine authorship of documents

Classify movie reviews as Favorable/Unfavorable/Neutral
Classify technical papers as Interesting/Uninteresting

Classify jokes as Funny/NotFunny

Classify websites of companies by Standard Industrial
Classification (SIC) code

43



Bag of Words Representation

What is the M representation for documents?

simplest, yet useful

ldea: Treat each document as a
sequence of words

* Assume that word positions are
generated independently

Dictionary: set of all possible words

* Compute over set of documents

* Use Webster’s dictionary, etc.

44



Bag of Words Representation

Represent document d as a vector of word counts x

* z;represents the count of word jin the document
— X is sparse (few non-zero entries)

number of times
“abbey” occurred

10 0k P b me e rmire il ot EHR
e 2120 o e e ook 44 vy o

o[oj1]0|0|0|4]|0]../0] X
/ Y, un 4+
E 3 S5S8&8 S5 a0 =
s oowns v mu—cmm-D_Q_Q N
>mC'Q'Q(U-Q‘Q
me o
d @ £ T}
T 4v] Ne)
(g0]
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Another View of Naive Bayes

* Let the model parameters for class ¢ be given by:

9(1 — {Qc]_w, 962? IR QClDl}

size of dictionary D
-0, = P(word joccurs in a document from ¢)

— Also have that Z 0., =1
J

* The likelihood of a document d characterized by x is

P 6, = =i T e
(160 =TT 0
/A A
— This is just the multinomial distribution, a generalization of
. e L e n\ . o
the binomial distribution (;,,)Pk(l — p)n
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Another View of Naive Bayes

* The likelihood of a document d characterized by x is

(%j xﬂ) H(ch)%

J

P(d]6.)=

e Use Bayes rule: introdu;e class priors

“\D) D
log P(0.. | d) « log (P(QC) H(f?pj)‘rj) = log P(8.) + Z zjlog .,
j=1

j=1

Therefore, | D
h(d) = argmax | log P(6,) + Y x;log0.;
- pt

This is just a linear decision function!



Document Classification with Naive
Baves

. Compute dictionary D over training set (if not given)
. Represent training documents as bags of words over D
. Estimate class priors via counting

. " . A ]\/ch + 1
. Estimate conditional probabilities as ch = N+ |D|

— N_;is number of times word j occurs in documents from class ¢

A W N -

— N_is total number of words in all documents from class ¢

* Naive Bayes model for new documents (represented in D) is:

h(d) = arg max (log P(c) + Z T uycj>
“ j

C

where w.; = logf,;

48



Review Naive Bayes

Density Estimators can estimate joint probability
distribution from data

Risk of overfitting and curse of dimensionality
Naive Bayes assumes that features are
independent given labels

— Reduces the complexity of density estimation

— Even though the assumption is not always true, Naive
Bayes works well in practice

Applications: text classification with bag-of-words
representation

— Naive Bayes becomes a linear classifier

Generative model
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