DS 4400

Machine Learning and Data Mining |

Alina Oprea
Associate Professor, CCIS
Northeastern University

February 19 2019

Logistics

* HW3 is due on Friday, February 22
* Project proposal due on Tuesday 02/26

— 1 page description of your project, including
problem statement, dataset, and ML algorithms

 Week of February 25
— Lecture on 02/26 taught by Lisa Friedland
— Lecture on 02/28 canceled

Outline

* Ensemble learning review
— Bagging and Random Forests

* Boosting
— AdaBoost
— Comparing Boosting and Bagging

* Density Estimation

Ensemble Learning

Consider a set of classifiers 4, ..., hy

Idea: construct a classifier H(x) that combines the
individual decisions of 4, ..., hy
* e.g., could have the member classifiers vote, or

* e.g., could use different members for different regions of the
instance space

Successful ensembles require diversity
* C(lassifiers should make different mistakes
* (Can have different types of base learners

How to Achieve Diversity

* Avoid overfitting
— Vary the training data

* Features are noisy

— Vary the set of features

Two main ensemble learning methods
 Bagging (e.g., Random Forests) Parallel
* Boosting (e.g., AdaBoost) Sequential

Bagging

Leo Breiman (1994)

Take repeated bootstrap samples from training set D
Bootstrap sampling: Given set D containing N training

examples, create D’ by drawing N examples at random
with replacement from D.

Bagging:

— Create k bootstrap samples D, ... D,.

— Train distinct classifier on each D..

— Classify new instance by majority vote / average.

General Idea

Original
D Training data

1

Step 1:
Create Multiple D, D, D, , D,
Data Sets
Step 2
Build Multiple /& ol e\
Classifiers N =N o N

| S

\
-
.
-
hl O
— -
).
f(f
-
).~

Step 3. N
Combine - "
Classifiers

Majority Votes

Random Forest Algorithm

1. Forb=1 to B:

(a) Draw a|bootstrap sample|Z* of size N from the training data.

(b) Grow a random-forest tree 7T; to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;,, 1s reached.

1. Select|m variables at random|from the p variables.

ii. Pick the best variable/split-point among the m.

1i1. Split the node into two daughter nodes.

2. Output the ensemble of trees {T},}7

To make a prediction at a new point x:

Regression: fxt(L) = 113 ,,_ Ty(x).

Classification: Let Cy(z) be the class predic tion of the bth random-forest
tree. Then ('l.?(.r) = majority vote {(b B

If m = p, this is equivalent to Bagging
Random Forest uses m = \/p

Lab

>
> library(randomForest)
> rf.carseats=randomForest (High~.-5ales,Carseats, subset=train, importance=TRUE)
> rf.carseats
Call:
randomForest (formula = High ~ . - Sales, data = Carseats, importance = TRUE,

Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 3

O0OB estimate of error rate: 18.5%
Confusion matrix:
No Yes class.error
No 104 14 0.1186441
Yes 23 59 0.2804878

>
> rf.pred=predict (rf.carseats,Carseats.test,type="class"™)
> table(rf.pred,High.test)
High.test

rf.pred No Yes

No 105 25

Yes 13 57
> mean(rf.pred==High.test)
[lj 0.81

subset = train)

Lab

> importance (rf.carseats,type=2)
MeanDecreaseGini

CompPrice 10.444114
Income 9.204883
Advertising 12.367002
Population T.722053
Price 23.437958
Shelwveloc 15.053694
Age 10.135102
Education 4.879102
Urban 1.585268

us 1.369725

10

Lab

» varImpPlot (rf.carseats)

Price
Shelveloc
Advertising
CompPrice
Age
Income

UsS

Urban
Education

Population

O

|
0

N I
10 20 30

MeanDecreaseAccuracy

Price
Shelveloc
Advertising
CompPrice
Age
Income
Population
Education
Urban

US

0 5 15
MeanDecreaseGini

11

How to Achieve Diversity

* Avoid overfitting
— Vary the training data

* Features are noisy

— Vary the set of features

Two main ensemble learning methods
* Bagging (e.g., Random Forests)

* Boosting (e.g., AdaBoost)

AdaBoost

* A meta-learning algorithm with great theoretical and
empirical performance

* Turns a base learner (i.e., a “weak hypothesis”) into a
high performance classifier

* Creates an ensemble of weak hypotheses by
repeatedly emphasizing mispredicted instances

Adaptive Boosting
Freund and Schapire 1997

13

Overview of AdaBoost

G(z) = sign [E M Gon(2)]

'
- Gu(z)
. Better classifiers will get

Mis-classified examples I higher weights
get higher weights
Correct examples get * e Gl2)
lower weights I

= (ra(x)

Uniform weights e G ()

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
sions of the datasef, and then combined to produce a final prediction.

14

Boosting [Shapire ‘89]

* Idea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote

* On each iteration t:

— weight each training example by how incorrectly it was
classified

— Learn a weak hypothesis — h,
— Asstrength for this hypothesis — o,

* Final classifier: H(X) = sign(Sat ht(X))

Convergence bounds with minimal assumptions on weak learner

If each weak learner A, is slightly better than random guessing (¢,< 0.5),

then training error of AdaBoost decays exponentially fast in number of
rounds T.

15

Power of Boosting

o
= Single Stump
=
=]
o
E =
N 244 Node Tree
LI
N
E -
=
=
I T T T T
0 100 200 300 400

Boosting lterations

FIGURE 10.2. Simulated data (1(.2): test error rafe for boosting with stumps,

as a function of the number of dterations. Also shown are the test error rate for

a single stump, and a 244-nede classification tree.

16

AdaBoost

1: Initialize a vector of n uniform weights wy

2 forit=1,..., T

3: Train model hs on X,y with weights wy
4: Compute the weighted training error of hy
5: Choose 3; = %111 (ﬂ)
! Et

6: Update all instance weights:

Wty1,i = W4 €XP (—Biyihi(x5))
T Normalize w;,1 to be a distribution
8: end for

9: Return the hypothesis

T
=1

* Size of point represents the instance’s weight

17

AdaBoost

1: Initialize a vector of n uniform weights wy

Train model h; on X,y with weights wy

4: Compute the weighted traming error of fi;
5% Choose 3; = %111 (ﬂ)
! Et
6: Update all instance weights:
Wiy1,; = Wi eXp (—Bryihe(X;))
7 Normalize w;1q to be a distribution
8: end for

9: Return the hypothesis

T
H(x) = sign (Z_;’ﬁht(x})
t=1

* [, measures the importance of h,

e If ¢, <0.5,then 3; >0

(can trivially guarantee)

18

1: Initialize a vector of n uniform weights wy

AdaBoost

2: fort=1,....T
3 Train model h; on X,y with weights wy
4: Compute the weighted training error of h;
5% Choose 3; = %111 (ﬂ)
! 'Et

6: Update all instance weights:

Wiy1,4 — Wiy €XP (_.i"}t.@:’-iht(xi))
7 Normalize w;11 to be a distribution

8: end for
9: Return the hypothesis

T
H(x) = sign (Z ,-"a’tht(x})

t=1
* Weights of correct predictions are multiplied by e Pt
* Weights of incorrect predictions are multiplied by ey

VA

19

1: Initialize a vector of n uniform weights wy

AdaBoost

2: fort=1,....T
3: Train model h; on X,y with weights wy
4: Compute the weighted traming error of hiy
5% Choose 3; = %111 (ﬂ)
. o

6: Update all instance weights:

Wty1,4 = Wt 4 €XP (—Btyiht(x;))
T Normalize w;11 to be a distribution

8: end for
9: Return the hypothesis

T
H(x) = sign (Z ,;-’i’tht(x)>
t=1

* Compute importance of hypothesis S;
* Update weights w;

20

AdaBoost

Initialize a vector of n uniform weights wy

cfort=1..... T

1:

2 _

3: Train model h; on X,y with weights w;

4 Compute the weighted training error of h;

o

Choose 3; = %111 (ﬂ)

. o
6: Update all instance weights:
W41, = Wt 3 €XP (—Bryihi(x;))

7 Normalize w1 to be a distribution
8: end for
9: Return the hypothesis

T
H(x) = sign (Z ;’Rtizt(x))
t=1

21

AdaBoost

1: Initialize a vector of n uniform weights wy
2: fort=1.....T

3: Train model h; on X,y with weights w;
4: Compute the weighted training error of h;
5% Choose 5y = %111 (ﬂ)

! Et
6: Update all instance weights:

W15 = Wi €XP (—Pryihe(Xi))

7 Normalize w;11 to be a distribution
8: end for
9: Return the hypothesis

T
H(x) = sign (Z.-’i’tht(x))
t=1

* Compute importance of hypothesis S;
* Update weights w;

22

AdaBoost

1: Initialize a vector of n uniform weights wy

2. fort=1,....T
3: Train model h; on X,y with weights wy
4: ‘ompute the weighted training error of h;

5. Choose ; = £ In (1;—:‘)
Update all instance weights:
Wey1,i = Wei exp (—Peyihe(Xqi))

7 Normalize w11 to be a distribution

8: end for
9: Return the hypothesis

T
H(x) = sign (Z,ﬁ’tht(x))
t=1

* Final model is a weighted combination of members

— Each member weighted by its importance

23

o =

[uhy |

=1

9

TSQIT

AdaBoost

INPUT: training data X,y = {(x;,vi) }1—q.
the number of iterations T’

. Initialize a vector of n uniform weights w; = E . ﬂ
cfort=1,....T
Train model iy on X, y with instance weights wy
‘ompute the weighted training error rate of /i:
€t — E Wt g
ity #Fhe (x;)
Choose 3; = %111 (ﬂ)
I Et
Update all instance weights:
Wip1,; = Wy exp (=Lyihe(x;)) YVi=1,....n
Normalize w1 to be a distribution:
W1, :
W11 = —mn +1.2 Vi=1,....n
> j=1 Wt41,j
. end for
. Return the hypothesis .
P Greedy Algorithm

T
H(x) = sign (Z,’i’tht(x))

t=1

24

Train with Weighted Instances

* For algorithms like logistic regression, can simply
incorporate weights w into the cost function

— Essentially, weigh the cost of misclassification differently
for each instance

T

Jreg(g) - = Z w; [yf lOg]E-Q(X-j_) + (1 - yf) log (1 -]1'9()(?'-))] +)\He[l:fﬂ Hé
1=1

* For algorithms that don’t directly support instance
weights (e.g., ID3 decision trees, etc.), use weighted
bootstrap sampling

— Form training set by resampling instances with
replacement according to w

25

Properties

* |f a pointis repeatedly misclassified
— Its weight is increased every time

— Eventually it will generate a hypothesis that
correctly predicts it

* |n practice AdaBoost does not typically overfit
* Does not use explicitly regularization

Resilience to overfitting

20-
' AdaBoost on OCR data with
C4.5 as the base learner

Test

—
.9

percent error
—

O,

10 100 1000

rounds of boosting

* Empirically, boosting resists overfitting

* Note that it continues to drive down the test error
even AFTER the training error reaches zero

Increases confidence in prediction when adding more rounds

27

Base Learner Requirements

* AdaBoost works best with “weak” learners
— Should not be complex
— Typically high bias classifiers

— Works even when weak learner has an error rate just
slightly under 0.5 (i.e., just slightly better than random)

* Can prove training error goes to 0 in O(log n) iterations

* Examples:

— Decision stumps (1 level decision trees)
— Depth-limited decision trees

— Linear classifiers

28

AdaBoost with Decision Stumps

Training data Classified data

29

AdaBoost in Practice
Strengths:

* Fast and simple to program
* No parameters to tune (besides T) Learn with Cross-Validation

« No assumptions on weak learner Error less than 7

When boosting can fail:

* Given insufficient data
* Overly complex weak hypotheses
* Can be susceptible to noise

* When there are a large number of outliers

30

Boosted Decision Trees

Error Rates on 27

* Boosted decision trees are one of Benchmark Data Sets
the best “off-the-shelf” classifiers |
— i.e., no parameter tuning o

wn 20

* Limit member hypothesis 3 15
complexity by limiting tree depth

* Gradient boosting methods are 5 e
typically used with trees in “D" TR R R T
practice boosting C4.5

“AdaBoost with trees is the best off-the-shelf classifier in the world” -Breiman, 1996
(Also, see results by Caruana & Niculescu-Mizil, ICML 2006)

31

Bagging vs Boosting

Bagging

Resamples data points

Weight of each classifier
is the same

Only variance reduction

VS.

Boosting

Reweights data points (modifies their
distribution)

Weight is dependent on
classifier’s accuracy

Both bias and variance reduced —
learning rule becomes more complex
with iterations

32

Review

* Ensemble learning are powerful learning methods

— Better accuracy than standard classifiers

* Bagging uses bootstrapping (with replacement),
trains T models, and averages their prediction
— Random forests vary training data and feature set at
each split
* Boosting is an ensemble of T weak learners that
emphasizes mis-predicted examples
— AdaBoost has great theoretical and experimental
performance

— Can be used with linear models or simple decision trees
(stumps, fixed-depth decision trees)

Acknowledgements

* Slides made using resources from:
— Andrew Ng
— Eric Eaton
— David Sontag
— Andrew Moore

* Thanks!

