
CS 4770: Cryptography

CS 6750: Cryptography and
Communication Security

Alina Oprea

Associate Professor, CCIS

Northeastern University

January 22 2018

Review

2

• Perfect security
• Impractical due to the requirements on key

length
• Computational security

– Relaxation of perfect security
– PPT adversaries
– Succeed with negligible probability

• EAV-secure encryption
‒ Definition of security
‒ Security game
‒ Security experiment

Computational Security

Typically, we will say that a scheme C is secure if

A
Probabilistic

polynomial-time
algorithm A

Pr[A(n) “breaks the scheme” C(n)] is negligible in n.

• Scheme C and the adversary A take input security parameter.
• 2 relaxations of perfect security

– PPT adversary
– Adversary can succeed, but with very small probability (negligible)

3

Perfect vs. Computational Security

Recall: An encryption scheme is perfectly secret if for all m0,m1, c

Pr[Enc(K, m0) = c] = Pr[Enc(K, m1) = c]

Meaning: no attacker can distinguish Enc(K, m0) from Enc(K, m1)

we will require that m0,m1 are chosen by a poly-time adversary

New: no PPT attacker can distinguish Enc(K, m0) from Enc(K, m1) with

better then negligible probability.

4

Security Game

PPT Adversary A Alice
Challenger

chooses m0,m1 such that
|m0|=|m1|

m0,m1 1. Choose k ← Gen(n)
2. chooses random b ← {0,1}
3. calculate c ← Enc(k,mb)

𝚷= (Gen,Enc,Dec): an encryption scheme

cMakes a guess b’

Security definition:
We say that (Gen,Enc,Dec) is indistinguishable against eavesdropping (EAV-
secure) if for any polynomial time adversary, Pr[b’=b] - ½ is negligible in n.

security parameter
n

5

The security definition

• Experiment ExpΠ,𝐴
EAV 𝑛 :

1. Choose 𝑘 ← 𝐺𝑒𝑛(𝑛)

2. 𝑚0, 𝑚1 ← 𝐴1 𝑛

3. 𝑏 ←𝑅 0,1 ; 𝑐 ← 𝐸𝑛𝑐𝑘 𝑚𝑏

4. 𝑏′ ← 𝐴2 𝑚0, 𝑚1, 𝑐

5. Output 1 if 𝑏 = 𝑏′ and 0 otherwise

We say that (Gen, Enc,Dec) is EAV-secure (secure against
eavesdropping) if:

For every PPT adversary 𝐴 = (𝐴1, 𝐴2):

|Pr[ExpΠ,𝐴
EAV 𝑛 = 1]- ½ | negligible in n

6

We can construct a
computationally secure

encryption scheme based on G

Suppose that G is a
“pseudorandom generator”

7

Construct secure encryption

• Impossible to construct from scratch

Outline

• Pseudorandom generators

– Security definition

– Examples

– Proofs by reduction

• PRG implies EAV-secure encryption

– Using PRG to shorten key in one-time pad

– Reduction proof

8

Pseudorandom generator: G

s G(s) l(n)n

A pseudorandom generator is a deterministic algorithm
G : {0,1}n → {0,1} l(n) .
• Output length: l(n) for all s with |s| = n we have |G(s)| = l(n).
• Stretch: l(n) - n

“seed”

Goal (imprecise): If s chosen randomly from {0,1}n ,
then G(s) “looks” like it was chosen randomly from {0,1}l(n) .

G

9

{0,1}l(n)

“Looks random”

Suppose s  {0,1}n is chosen randomly.

Can
G(s)  {0,1}l(n)

be uniformly random?

{0,1}n

G({0,1}n)

10

Computationally indistinguishable

PRG – main idea of the definition

a random string R

outputs:

b {0,1}

G(S)

PPT distinguisher D

should not be able to distinguish...

scenario 0

scenario 1

11

Cryptographic PRG

a random string r

G(s) (where s random)

or

Should not be able to
distinguish...

outputs:

0 if he thinks it’s r

1 if he thinks it’s G(s)

n – a parameter
s – a variable distributed uniformly over {0,1}n

r – a variable distributed uniformly over {0,1} l(n)

Definition: G is a secure PRG if for every PPT algorithm D we have:
| Pr[D(G(s)) = 1] – Pr[D(r) = 1] |

is negligible in n.

Definition

12

PRG Example 1

• Define 𝐺: 0,1 𝑛 → 0,1 𝑛+1 as:
𝐺 𝑠1⋯𝑠𝑛 = 𝑠1⋯𝑠𝑛𝑠𝑛+1 ,where 𝑠𝑛+1 = 𝑠1 ⊕⋯⊕ 𝑠𝑛

• Is G a secure PRG?

Build distinguisher D for G; D is given string u

D outputs 1 if un+1 = 𝑢1 ⊕⋯⊕𝑢𝑛

• World 0 - u = r random: Pr 𝐷 𝑟 = 1 =
1

2

• World 1 - u = G(s): Pr 𝐷 𝐺(𝑠) = 1 = 1

|Pr 𝐷 𝑟 = 1 - Pr 𝐷 𝐺(𝑠) = 1 | = ½

13

PRG Example 2

• Assume 𝐺: 0,1 𝑛 → 0,1 ℓ(𝑛) is a PRG

• Define 𝐺′: 0,1 𝑛 → 0,1 ℓ(𝑛) as:

𝐺′(𝑠) = ҧ𝐺 𝑠 = 𝐺(𝑠)⊕ 1ℓ(𝑛)

• Is G’ a secure PRG?

G secure PRG G’ secure PRG

Distinguisher D’ for G’ Distinguisher D for G

Reduction proof

14

PRG Example 2
Assume 𝐺: 0,1 𝑛 → 0,1 ℓ(𝑛) is a PRG

Define 𝐺′: 0,1 𝑛 → 0,1 ℓ(𝑛) as: 𝐺′ 𝑠 = ҧ𝐺 𝑠

• Let D’ be a distinguisher for G’ with prob 𝜖(𝑛) non-negligible
|Pr 𝐷′ 𝑟 = 1 - Pr 𝐷′ 𝐺′(𝑠) = 1 = 𝜖(n)

• Design D dist. for G

– D given string 𝑢 (𝑢 = G s in world 1 and 𝑢 = r random in world 0)

– D gives ത𝑢 input to D’ and outputs what D’ outputs

• World 0: Pr 𝐷 𝑟 = 1 = Pr 𝐷′ 𝑟 = 1

• World 1: Pr 𝐷 𝐺 𝑠 = 1 = Pr 𝐷′ ҧ𝐺 𝑠 = 1

Thus:

| Pr 𝐷 𝑟 = 1 - Pr 𝐷 𝐺 𝑠 = 1 |

= |Pr 𝐷′ 𝑟 = 1 - Pr 𝐷′ 𝐺′(𝑠) = 1 |

= 𝜖(n)

15

PRG Example 3

• Assume 𝐺1, 𝐺2: 0,1
𝑛 → 0,1 ℓ(𝑛) are PRGs

• Define 𝐺: 0,1 𝑛 → 0,1 2ℓ(𝑛) as:
𝐺 𝑠 = 𝐺1 𝑠 ||𝐺2(𝑠)

• Is G a secure PRG?

• Take 𝐺2 𝑠 = ҧ𝐺1 𝑠 , then 𝐺 𝑠 = 𝐺1(𝑠) ҧ𝐺1 𝑠

• Build D distinguisher for G; D given string 𝑢 = 𝑢1𝑢2
• D outputs 1 if u2 = ത𝑢1

• World 0 - u = r random: Pr 𝐷 𝑟 = 1 =
1

2ℓ(𝑛)

• World 1 - u = G(s): Pr 𝐷 𝐺(𝑠) = 1 = 1

|Pr 𝐷 𝑟 = 1 - Pr 𝐷 𝐺(𝑠) = 1 | = 1-
1

2ℓ(𝑛)

17

Using a PRG to build efficient OTP
Use PRGs to “shorten” the key in the one time pad

s PRG(s)

Key: random string of length n
Plaintexts: strings of length l(n)

Enc(s,m)
m

m
xor

PRG(s)

xor

s PRG(s) c

c
xor

PRG(s)

Dec(s,m)

18

EAV-secure one-time pad

Key

Theorem

If G is a secure PRG then the
encryption scheme
constructed before is
secure.

cryptographic PRGs
exist

EAV-secure encryption
exists

s G(s) m

m
xor
G(s)

xor

(for simplicity consider only the single message case)

Attack on encryption Attack on PRG

19

Reduction proof

Chooses m0,m1 m0,m1

Tries to guess b
c

1. b = 0,1 random
2. c := G(s) xor mb

Recall: Security Game

If exists PPT “encryption attacker” A that breaks security of encryption:

Pr[“guess b correctly”] =
1

2
+ 𝛿(𝑛).

where 𝛿 is not negligible.

Then exists PPT “PRG distinguisher” that break security of PRG G.
20

b’ If b=b’ then “success”

A

Design distinguisher D for PRG

Let A be PPT attacker that breaks security of encryption:

Pr[b’ =b] =
1

2
+ 𝛿 𝑛 where 𝛿 is not negligible.

Design PPT “PRG distinguisher” D that breaks security of PRG G.
D is given an input u (either random string or G(s)) and needs to
distinguish them.
D interacts with A by playing the challenger 21

Chooses m0,m1
m0,m1

Tries to guess b
c

1. b = 0,1 random
2. c := G(s) xor mb

World 0: u = r random

World 1: u = G(s)

b’

A D

Design distinguisher D for PRG

22

Chooses m0,m1
m0,m1

Tries to guess b
c

1. b = 0,1 random
2. c := u xor mb

World 0: u = r random

World 1: u = G(s)

b’

If the adversary A
guessed b correctly

otherwise

output 1:
“u is pseudorandom”.

output 0:
“u is random”.

A D

23

Chooses m0,m1
m0,m1

Tries to guess b
c

1. b = 0,1 random
2. c := u xor mb

World 0: u = r random

World 1: u = G(s)

b’

If the adversary A
guessed b correctly

otherwise

output 1:
“u is pseudorandom”.

output 0:
“u is random”.

A D

“World 0”: u is a random string

prob 0.5

24

Chooses m0,m1
m0,m1

Tries to guess b
c

1. b = 0,1 random
2. c := G(s) xor mb

World 0: u = r random

World 1: u = G(s)

b’

If the adversary A
guessed b correctly

otherwise

output 1:
“u is pseudorandom”.

output 0:
“u is random”.

A D

“World 1”: x = G(S)

Prob A guesses correctly = 0.5 + δ(n)

u is a random string r u = G(s)

the adversary A guesses b correctly
with probability 0.5

the adversary A guesses b correctly
with probability 0.5 + δ(n)

Pr[D(r) = 1] = .5 Pr [D(G(s)) = 1] = .5+δ(n)outputs:

| P(D(r) = 1) – P(D(G(s)) = 1) |

Hence

Distinguisher D breaks the PRG!

= | 0.5 – (0.5 + δ(n)) | = δ(n)

25

The complexity

The distinguisher simply simulated

one execution of the adversary

Hence he works in polynomial time.

26

Acknowledgement

Some of the slides and slide contents are taken from
http://www.crypto.edu.pl/Dziembowski/teaching
and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this
material is currently granted without fee provided that copies are made only for personal or
classroom use, are not distributed for profit or commercial advantage, and that new copies
bear this notice and the full citation.

We have also used slides from Prof. Dan Boneh online cryptography course at

Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

27

http://www.crypto.edu.pl/Dziembowski/teaching
http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

