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Outline

• RSA encryption in practice
– Transform RSA trapdoor into CCA secure encryption

– PKCS standard and attacks

– OAEP standard

• ElGamal encryption
– Based on Diffie-Hellman key exchange

– Proof of security based on DDH assumption

• Digital signatures
– Integrity in public-key world

– Equivalent of MACs

– Public verifiability
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Trapdoor functions 

Def:   a trapdoor function X⟶Y  is a triple of efficient algorithms   
(Gen, F, F-1)

• Gen():   randomized alg. outputs a key pair    (pk,  sk)

• F(pk,⋅):   deterministic alg. that defines a function    X ⟶ Y

• F-1(sk,⋅):    defines a function    Y ⟶ X    that inverts   F(pk,⋅)

Correctness:    ∀(pk,  sk) output by G     

∀x∈X:     F-1(sk,  F(pk, x) ) = x

Trapdoor permutation F: X⟶X, F-1 : X⟶X
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The RSA trapdoor permutation

Gen(): Choose random primes   p,q 1024 bits.      

Set  N=pq. RSA modulus

Choose integers   e , d   s.t. e⋅d = 1   (mod (N) )

Output    pk = (N, e)    ,     sk = (d)

F-1( sk, y) = yd mod N 

yd =  RSA(x)d = xed = x
k(N)+1

=  (x
(N))

k 
 x = x

F( pk, x ):  ;    F(pk, x) = xe mod N
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The RSA assumption

RSA assumption:    RSA is trapdoor permutation

For all PPT algorithms  A:

Pr[ A(N,e,y) = y1/e ] < negligible

where      p,q n-bit primes,     Npq,     yZN
*R R
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RSA public-key encryption

(E, D):   authenticated encryption scheme
H:  ZN  K   where  K is key space of (Es,Ds)

• Gen():  generate RSA parameters:                          
pk = (N,e),    sk = (d)

• Enc(pk, m): (1) choose random x in ZN

(2)  y  RSA(x) = xe ,   k  H(x)

(3) output    (y ,  E(k,m) )

• Dec(sk,  (y, c) ):    output  D( H(RSA-1 (y)) ,  c)
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CCA secure
ISO Standard
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RSA encryption in practice

Never use textbook RSA.

RSA in practice   (since ISO standard is not often used) :

Main questions:
– How should the preprocessing be done?
– Can we argue about security of resulting system?

msg
key

Preprocessing

cip
h

ertext

RSA
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PKCS1 v1.5

PKCS1 mode 2: (encryption)

• Resulting value is RSA encrypted

• Widely deployed, e.g.  in HTTPS

02 random pad FF msg

RSA modulus size  (e.g. 2048 bits)

16 bits
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Attack on PKCS1 v1.5    (Bleichenbacher 1998)

PKCS1 used in HTTPS:

 attacker can test if 16 MSBs of plaintext = ’02’

Chosen-ciphertext attack:  to decrypt a given ciphertext c do:
– Choose  r  ZN.     Compute  c’ ⟵ rec = (r  PKCS1(m))

e

– Send  c’  to web server and use response

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

Is this
PKCS1?

02
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Simple example - Bleichenbacher

Suppose N is   N = 2n (an invalid RSA modulus).    Then:

• Sending    c    reveals    msb( x )
• Sending   2e⋅c = (2x)e  in ZN reveals   msb(2x mod N) = msb2(x)
• Sending   4e⋅c = (4x)e in ZN reveals   msb(4x mod N) = msb3(x)
• … and so on to reveal all of x

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

is msb=1?

1

compute  x⟵cd in ZN
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HTTPS Defense   (RFC 5246)

Attacks discovered by Bleichenbacher resulted in 
the following change:

1.  Decrypt the message to recover plaintext m

2. If the PKCS#1 padding is not correct

3.  Generate a string R of 46 random bytes

4. pre_master_secret =  R
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Still no proof of security



PKCS1 v2.0:   OAEP

New preprocessing function:  OAEP   [BR94]

Theorem [FOPS’01] : RSA is a trapdoor permutation  
RSA-OAEP is CCA secure when  H,G  are random functions

in practice:  use SHA-256 for H and G

H+

G +

plaintext to encrypt with RSA

rand.msg 01 00..0

check pad
on decryption.
reject CT if invalid.

{0,1}n-1
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Review:  the Diffie-Hellman protocol   (1977)

Fix a finite cyclic group  G    (e.g G = (Zp)*  )   of order  q

Fix a generator g  in  G      (i.e.   G = {1, g, g2, g3, … , gq-1 }  )

Alice Bob

choose random x in {1,…,q} choose random y in {1,…,q}

kAB = gxy =   (gx)
y

= AyBx =       (gy)
x

=

A = gx

B = gy
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ElGamal:   converting to pub-key enc.  (1984)

Fix a finite cyclic group  G    (e.g G = (Zp)*  )   of order  q

Fix a generator g  in  G      (i.e.   G = {1, g, g2, g3, … , gq-1}  )

Alice Bob

choose random x in {1,…,q} choose random y in {1,…,q}

h = gx

Enc(m) = [  u=gy , c=k∙m ]

compute  k=gxy = hy
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ElGamal:   converting to pub-key enc.  (1984)

Fix a finite cyclic group  G    (e.g G = (Zp)*  )   of order  q

Fix a generator g  in  G      (i.e.   G = {1, g, g2, g3, … , gq-1}  )

Alice Bob

choose random x in {1,…,q} choose random y in {1,…,q}

h = gx

Enc(m) = [  u=gy ,c= k∙m ]

compute  k=gxy = hy

To decrypt (u,c):

compute  k = ux

and decrypt m = k-1∙c
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The ElGamal system  (a modern view)

G:   finite cyclic group of order q

We construct a pub-key enc. system (Gen, Enc, Dec):

• Key generation Gen:    

– choose random generator  g in G and random  x in Zq

– output    sk = x ,     pk = (g, h=gx )
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Enc( pk=(g,h),  m) :

y ⟵ Zq ,  u ⟵ gy ,  k ⟵ hy

c ⟵ k∙m

output   (u, c)

Dec( sk=x, (u,c) ) :

k ⟵ ux

m ⟵ k-1∙c

output   m



ElGamal performance

Encryption:     2 exp.       (fixed basis)       

– Can pre-compute     [ g(2^i)  ,  h(2^i)     for   i=1,…,log2 n ]
– 3x speed-up   (or more)

Decryption:     1 exp.       (variable basis)

Enc( pk=(g,h),  m) :

y ⟵ Zq ,  u ⟵ gy ,  v ⟵ hy
Dec( sk=x, (u,c) ) :

k ⟵ ux
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Decisional Diffie-Hellman
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Let  G be a finite cyclic group  and  g generator of G 

G =  { 1 , g , g2 , g3 ,   …  ,  gq-1 }      

q is the order of G 

Definition:  We say that DDH is hard in G if for all 
PPT  adversaries D:

|Pr[  D( gx ,gy ,gxy ) = 1 ] - Pr[  D(  gx ,gy ,gz ) = 1 ] |  
<  negligible

G, q and g are public and known to D

x, y, z are chosen uniformly at random in {1,…q-1}



Security

Theorem: Let G be a cyclic group of order q. Assuming that the 

DDH problem is hard, then El-Gamal encryption is CPA secure.

In particular,  for every PPT adversary A attacking the CPA security 

of El-Gamal:

Pr[ExpΠ,𝐴
CPA 𝑛 = 1] = 1/2 + negligible(n)
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Proof of security - Intuition

Enc(pk=(g,h),  m)Π

Π’ Enc’(pk=(g,h),  m)

1. Success of adversary to break Π and Π’ in CPA game is similar 

2. Success of adversary to break Π’ in CPA game is negligible

Under the assumption that DDH is hard !
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y ⟵ Zq ,  u ⟵ gy

c ⟵ hy∙m (= gxy∙m)

output   (u, c)

y ⟵ Zq ,  u ⟵ gy ,  z ⟵ Zq

c ⟵ gz∙m

output   (u, c)



Proof of security – step 1

1. Success of adversary to break Π and Π’ in CPA game is similar 

• Let A be a PPT adversary in CPA game 

• We build D a distinguisher for DDH

• D knows (G, q,  g) and is given  input  (gx ,gy, w)

• World 1: w = gxy

• World 0: w = gz

Assume that DDH is hard.
For any PPT adversary A:

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| ≤ negl(n)
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Proof of security – step 1

1. Success of adversary to break Π and Π’ in CPA game is similar 

• D runs A. A chooses two messages m0 and m1

• D picks a bit b at random and send c = w∙mb

• World 1: c = gxy∙m ; D simulates exactly scheme Π

• World 0: c = gz∙m ; D simulates exactly scheme Π’

• D outputs what A outputs

Assume that DDH is hard.
Then for any PPT adversary A:

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| ≤ negl(n)
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Proof of security – step 1

1. Success of adversary to break Π and Π’ in CPA game is similar 

• D runs A. 

• D outputs what A outputs

• |Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| =

| Pr[  D( gx ,gy ,gxy ) = 1 ] - Pr[  D( gx ,gy ,gz ) = 1 ] |, which is 
negligible(n) 

Assume that DDH is hard.
Then for any PPT adversary A:

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| ≤ negl(n)
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Proof of security – step 2

2. Success of adversary to break Π’ in CPA game is negligible

• Let A be an adversary in CPA game for Π′

• A chooses two messages m0 and m1

• A receives (gy , gz∙mb)

• First part is independent on message

• If z is random, then gz is random in G 
– For any v in G, Pr[gz∙mb = v] = Pr[gz = (mb)-1∙v] = 1/q

– gz∙mb does not reveal any information about mb 

For any PPT adversary A: 

Compute Pr[ExpΠ′,𝐴
CPA 𝑛 = 1]
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Conclusion

• For any PPT adversary A:

Pr[ExpΠ,𝐴
CPA 𝑛 = 1] ≤ |Pr[ExpΠ,𝐴

CPA 𝑛 = 1]

−Pr[ExpΠ,′𝐴
CPA 𝑛 = 1]|+Pr[ExpΠ,′𝐴

CPA 𝑛 = 1]

= ½ + negligible(n)

• El-Gamal encryption is CPA secure under DDH 
assumption
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Key insights

• Trapdoor permutations (e.g., RSA) are not a 
secure encryption method
– They are deterministic

• Secure public-key encryption can be constructed 
from trapdoor permutations
– ISO standard – CCA secure

– PKCS1 v1.5 (susceptible to padding oracles)

– OAEP – CCA secure 

• Discrete log based schemes
– El Gamal encryption constructed from Diffie-Hellman

– CPA security based on hardness of DDH

26



Acknowledgement

Some of the slides and slide contents are taken from 
http://www.crypto.edu.pl/Dziembowski/teaching
and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this 
material is currently granted without fee provided that copies are made only for personal or 
classroom use, are not distributed for profit or commercial advantage, and that new copies 
bear this notice and the full citation.

We have also used slides from Prof. Dan Boneh online cryptography course at 

Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

27

http://www.crypto.edu.pl/Dziembowski/teaching
http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

