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Review

• Hash functions

– Collision resistance

– Merkle-Damgaard construction

• Birthday attacks on hash functions

– Upper and lower bound on collision probability

• MAC constructions

– MACs from hash functions

– HMAC construction

– More efficient than CBC-MAC
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Number theory review
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Greatest common divisor
Def:   For integers  x, y:     gcd(x, y)   is the greatest common 
divisor d such that d|x and d|y

Fact:   for all integers   x, y   there exist  a, b   such that

a⋅x + b⋅y = gcd(x,y)

Coef a,b can be found with extended Euclidean algorithm

If  gcd(x,y)=1 we say that x and y are relatively prime 

Fact: x and y are relatively prime if and only if there exist  a, 
b  such that

a⋅x + b⋅y = 1
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Modular inversion
Over rationals, inverse of 2 is  ½ .  What about 𝑍𝑁 ?

Definition:    The multiplicative inverse of x in 𝑍𝑁 is 
an element y in 𝑍𝑁 such that x ⋅ 𝑦 = 1 in 𝑍𝑁

y is denoted x-1  

Example:    Let N be an odd integer. What is the 
inverse of 2 in 𝑍𝑁?

2 ⋅
𝑁 + 1

2
= N+ 1 = 1 mod N
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Modular inversion

Which elements have an inverse in 𝑍𝑁?

Lemma:    x in 𝑍𝑁 has an inverse if and only if     
gcd(x,N) = 1

Proof:

• gcd(x,N)=1    ⇒ ∃ a,b:   a⋅x + b⋅N = 1

a⋅x = 1 mod N ⇒ x-1  = a

• If x has an inverse a ⇒ a⋅x =1  mod N ⇒ exists b 
a⋅x = bN +1 ⇒ a⋅x - bN =1 ⇒ gcd(x,N) = 1
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Solving modular linear equations

Solve:         a⋅x + b = 0   in    𝑍𝑁

Solution:      x = −b⋅a-1   in    𝑍𝑁
only if a is invertible

Find  a-1 in  𝑍𝑁 using extended Euclidean alg.

Run time:   O(log2 N)
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Groups

• Definition: A group (G, *) is a set G on which a 
binary operation is defined which satisfies the 
following properties: 

– Closure: For all a, b ∈ G, a * b ∈ G. 

– Associative: For all a, b, c ∈ G, (a * b)* c = a * (b * c). 

– Identity: ∃ e ∈G s.t. for all a ∈ G, a* e = a = e * a.

– Inverse: For all a ∈ G, ∃ a-1 ∈ G s. t. a* a-1 = a-1* a=e. 

• Examples

– (𝑍𝑁,+) is a group, where + is addition modulo N 

– (𝑍𝑝,*) is a group, where * is multiplication modulo p 
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Abelian and cyclic groups

• Definition: A group (G, *) is called abelian if 
operation * is commutative

– Commutative: For all a, b ∈ G, a * b = b * a

• Example: (𝑍𝑁,+) is an abelian group 

• Definition: A group G is cyclic if ∃ generator g 
∈G s.t. any h ∈G can be writen h = gi

• Example: (𝑍𝑝,*) is a cyclic group
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Invertible elements in 𝑍𝑁

Definition (group of invertible elements in 𝑍𝑁 )   

=   {  x ∈ 𝑍𝑁 :  gcd(x,N) = 1 }

Examples:   

1. for prime p, 

2. =  { 1, 5, 7, 11}

For  x in   , can find  x-1 using extended Euclidean 
algorithm
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Order of group/elements

• Definition: The order of a group G, ord(G), is 
defined as the number of elements in the 
group.

• Example: The order of (𝑍𝑝,*) is

• Definition: The order of an element g from a 
finite group G, is the smallest power of n such 
that gn=e , where e is the identity element.

• Example: What is the order of 2 in (𝑍5
∗, *)? 

– It is 4 because 24 ≡ 1 mod 5
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Facts on group order

Theorem: If G is a group of order m. Then for 
any element g ∈ G, gm = 1. 

Proof (assume G abelian): Let g1,…,gm be all the 
elements of G and g an element in G. Then:

𝑔1 ⋅ … ⋅ 𝑔𝑚 = 𝑔 ⋅ 𝑔1 … 𝑔 ⋅ 𝑔𝑚
This is true because all m elements on the right 
side of the equality are distinct. 

Then: 𝑔1 ⋅ … ⋅ 𝑔𝑚 = 𝑔𝑚𝑔1 ⋅ … ⋅ 𝑔𝑚 and thus 
𝑔𝑚 = 1
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Computing in the exponent

Theorem: Let G be a group of order m. Then for 
any element g ∈ G, gm = 1. 

Corollary Let G be a group of order m>1. Then 
for any element g ∈ G and any integer x:

𝑔𝑥 = 𝑔[𝑥 𝑚𝑜𝑑 𝑚]
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Fermat’s Little Theorem

Theorem: Let G be a group of order m. Then for 
any element g ∈ G, gm = 1. 

Corollary Let p be a prime. For any integer a:
𝑎𝑝−1 = 1mod p

Proof:

Apply the theorem for (𝑍𝑝
∗ , *). The order of 𝑍𝑝

∗ is 

p-1 and the result follows immediately.
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The structure of 𝑍𝑝
∗

Theorem: 𝑍𝑝
∗ is a cyclic group, that is

∃ g ∈ 𝑍𝑝
∗ such that    {1, g, g2, …, gp-2} = 𝑍𝑝

∗

g is called a generator of 𝑍𝑝
∗

Example (p=7): 

{1, 3, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} = 𝑍7
∗

Not every element is a generator

{1, 2, 22, 23, 24, 25} = {1, 2, 4} 
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Euler’s generalization of Fermat  (1736)

Definition:  For an integer N define   φ (N) = |𝑍𝑁
∗ |       

Examples:        

• φ (p) = p-1 for p prime

• φ (12) = |{1,5,7,11}| = 4    

• For N=p⋅q, p and q primes, φ (N) = (p-1)(q-1)

– Num. elements divisible with p is q-1

– Num. elements divisible with q is p-1

– φ (N) = N-1-(p-1)-(q-1) = (p-1)(q-1)  
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Euler’s Theorem

Theorem: Let G be a group of order m. Then for 
any element g ∈ G, gm = 1. 

Corollary For any integer a:

𝑎ф(𝑁) = 1mod N

Proof:

Apply the theorem for (𝑍𝑁
∗ , *). The order of 𝑍𝑁

∗

is ф(N) and the result follows immediately.

Example: 5 ф(12) = 54 = 625 = 1 in 𝑍12
∗
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Modular e’th roots

We know how to solve modular linear equations:

a⋅x + b = 0    in ZN Solution:      x = −b⋅a-1   in ZN

What about higher degree polynomials?

Example:     Let  p be a prime and   c ∈ Zp .       

Can we solve:

x2 – c = 0    ,      y3 – c = 0    ,    z37 – c = 0     in   Zp
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Modular e’th roots

Let  p  be a prime and  c ∈ Zp .

Definition:     x ∈ Zp s.t. Xe = c in Zp is called an  
e’th root of c .

Examples:  

71/3 =   6    in    

31/2 =   5    in    

11/3 =   1     in    21/2 does not exist in

63 = 216 = 7 𝑚𝑜𝑑 11
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The easy case

When does   c1/e in 𝑍𝑝
∗ exist?      Can we 

compute it efficiently?

The easy case:     suppose    gcd( e , p-1 ) = 1
Then for all  c  in 𝑍𝑝

∗ :  c1/e exists in 𝑍𝑝
∗ and is 

easy to find.

Proof: There exists a and b s.t. a⋅e + b(p-1)= 1. 

c = 𝑐𝑎𝑒+𝑏(𝑝−1) = 𝑐𝑎𝑒(𝑐𝑝−1)𝑏 = 𝑐𝑎𝑒. Then 𝑐𝑎 is 
the e-th root of c
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The case   e=2:   square roots

If p is an odd prime then   gcd( 2, p-1) ≠ 1

Fact:    in 𝑍𝑝
∗ ,    x ⟶ x2 is a 2-to-1 function

Example:   in 𝑍11
∗ :

Definition:  x in 𝑍𝑝
∗ is a quadratic residue (Q.R.) if it has a 

square root (exists y in in 𝑍𝑝
∗ such that y2 = 𝑥 mod p)

p odd prime  ⇒ the # of Q.R. in       is   (p+1)/2 

1 10

1

2 9

4

3 8

9

4 7

5

5 6

3

x −x

x2
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Q.R. theorem for odd primes

Theorem: Let p be an odd prime.  Then x in 𝑍𝑝
∗ is a 

Q.R.      ⟺ x(p-1)/2 = 1 mod p

Example:

Proof: If x is Q.R., there exists y such that:            

𝑦2 = 𝑥 𝑚𝑜𝑑 𝑝 . Then 𝑥
𝑝−1

2 = yp−1 = 1mod p

in           :     15,   25,   35,  45,  55,  65,  75,  85,  95,  105

= 1    -1     1     1    1,   -1,  -1,  -1,   1,    -1     
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Q.R. theorem for odd primes

Theorem: Let p be an odd prime.  Then x in 𝑍𝑝
∗ is a 

Q.R.      ⟺ x(p-1)/2 = 1 mod p

Proof: Let p = 3 mod 4.  Assume 𝑥
𝑝−1

2 = 1mod p.

Then:  𝑥
𝑝+1

4

2

= 𝑥
𝑝+1

2 = 𝑥
𝑝−1

2 𝑥 = 𝑥

So 𝑥
𝑝+1

4 is the square root of x, and thus x is Q.R.

Proof can be extended to p = 1 mod 4. 
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Solving quadratic equations mod p

Solve:         a⋅x2 + b⋅x + c = 0     in   Zp

Solution:      x =    (-b ± √b2 – 4⋅a⋅c   )  /   2a     in   Zp

• Find    (2a)-1 in Zp using extended Euclidean alg.      

• Find square root of  b2 – 4⋅a⋅c in Zp (if it exists)

using a square root algorithm
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Computing e’th roots mod N  ??

Let  N  be a composite number and e > 1

When does   c1/e in  ZN exist?      Can we 
compute it efficiently?

Answering these questions requires the 
factorization of  N

(as far as we know)
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Intractable problems with composites

Consider the set of integers:    (e.g., for n=1024)

Problem 1:   Factor a random  N in C(n)      (for large n=1024)

Problem 2:  Given a polynomial  f(x) where degree(f) > 1 and a 

random  N  in C(n) find  x in  s.t. f(x) = 0 mod N

RSA assumption: Taking modular roots c1/e in  ZN for e>2 is hard

Factoring assumption is weaker than RSA

C(n) :=   { N = p⋅q where  p,q are n-bit primes }
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The factoring problem

Gauss (1805):

Best known alg.   (NFS):      run time   exp(               )   for n-bit 
integer

Current world record:     RSA-768    (232 digits) 
• Work:  two years on hundreds of machines
• Factoring a 1024-bit integer:    about 1000 times harder

⇒ likely possible this decade

“The problem of distinguishing prime numbers from 
composite numbers and of resolving the latter into 
their prime factors is known to be one of the most 
important and useful in arithmetic.”
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Key insights

• Numbers have a unique factorization into 
primes

• Solving linear equations in 𝑍𝑁 can be done 
efficiently with extended Euclidian algorithm

• Solving quadratic equations in 𝑍𝑝
∗ can be done 

efficiently

• Computing modular roots mod N (for N a 
random large number N=pq, p, q primes) is 
considered an intractable problem
– Basis of RSA algorithm 
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Further reading

• A Computational Introduction to Number 
Theory and Algebra,
V. Shoup,  2008    (V2),     Chapter 1-4, 11, 12

Available at  //shoup.net/ntb/ntb-v2.pdf
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How to generate large primes?

• Input: length n; parameter t
• Output: a uniform n-bit prime p
• For i = 1 to t:

– 𝑝′ ← 0,1 𝑛−1

– 𝑝 = 1||𝑝′

– If p is prime, return p                   Primality test

• Return fail

The fraction of prime n-bit numbers is > 1/3n
Set t to get a negligible prob of fail (e.g., for t=3n2, 
probability of failure < e-n)
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Primality testing – Attempt I

• Goal: Distinguish primes from composites
– Test input number N

• If N is prime, then for all 𝑎 ∈ ሼ
ሽ

1,… , 𝑁 −
1 , 𝑎𝑁−1 = 1𝑚𝑜𝑑 𝑁 (Fermat’s theorem)

• If there exists an a for which 𝑎𝑁−1 ≠
1 𝑚𝑜𝑑 𝑁, then N is composite

• Such an a is called a witness for N composite

• If there exists a witness a, then at least half 
elements in 𝑍𝑁

∗ are witnesses for N composite
– Some composites do not have witnesses!

32



Primality testing – Refined

• Goal: Distinguish primes from composites
– Test input number N

• If N is even, it is composite

• If N is perfect power (N = me), it is composite

• Otherwise, decompose 𝑁 − 1 = 2𝑟𝑢, u odd

• An a is called strong witness if:
– 𝑎𝑢 ≠ ± 1𝑚𝑜𝑑 𝑁 and

– 𝑎2
𝑖𝑢 ≠ −1𝑚𝑜𝑑 𝑁 , ∀𝑖 ∈ ሼ1, … , 𝑟 − 1ሽ

• If N is composite, then at least half elements in 
𝑍𝑁
∗ are strong witnesses!
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Miller-Rabin primality test
• Input: Integer N; parameter t

• Output: A decision whether N is prime/composite

• If N even, return “composite”

• If N perfect power, return “composite”

• Decompose 𝑁 − 1 = 2𝑟𝑢, u odd

• For j = 1 to t:
– 𝑎 ← {1,…,N-1} // choose at random

– If 𝑎𝑢 ≠ ± 1𝑚𝑜𝑑 𝑁 and 𝑎2
𝑖𝑢 ≠ −1𝑚𝑜𝑑 𝑁 , ∀𝑖 ∈

ሼ1, … , 𝑟 − 1ሽ, return “composite”

• Return “prime”
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If N composite, prob ½ to find strong witness in each iteration
If N composite, the probability that it outputs prime is 1/2t
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