
CS 4770: Cryptography

CS 6750: Cryptography and
Communication Security

Alina Oprea

Associate Professor, CCIS

Northeastern University

March 12 2018

Announcements

2

• Homework 3 will be out today
– Due date Fri 03/23

• Distinguished speaker on Thu 03/22
– Location 97 Cargill, 3-4:30pm

– Prof Mike Reiter, UNC Chappel Hill

– Title: “Side channels in multi-tenant environments”

– Extra credit for next homework: submit a paragraph
about his talk

• If anyone is interested in meeting him 4:30-5pm,
please email me

Recap

• Collision-resistant hash functions are useful
for many tasks

• Constructing hash functions using Merkle-
Daamgard paradigm
– Traditional designs: MD5, SHA-1, SHA-2

• SHA-3 is the new standard
– Explicit collision found in MD5

– Structural waeknesses in SHA-1

• Birthday paradox implies n/2 level of security
for n-bit hash function in best case

3

Outline

• Birthday attack

– Prove lower bound

– Generic attack on hash functions

• Construction of HMAC

– More efficient than CBC-MAC

• Applications of hash functions

– Merkle trees

• Introduction to number theory

4

Collision-resistant hash functions

a hash function
H : {0,1}* → {0,1}n

short H(m)

long m

Requirement: it should be hard to find a pair (m,m’) such that
H(m) =H(m’)

a “collision”collision-resistance

5

Hash functions – the security definition

outputs (m,m’)

security parameter
n

H is a collision-resistant hash function ifA

polynomial-time
adversary A

Pr[A outputs m, m’ such that H(m)=H(m’)]
is negligible

6

Birthday paradox

• If we choose q elements 𝑦1, … 𝑦𝑞 at random

from {1,…,N}, what is the probability that
there exists i and j such that 𝑦𝑖 = 𝑦𝑗 ?

What is the probability that two people have
the same birthday?

365 possible
days

7

Upper bound

• If we choose 𝑦1, … 𝑦𝑞 uniformly at random

from {1,…,N}, the probability of collision is
upper bounded by:

Coll 𝑞, 𝑁 ≤
𝑞(𝑞−1)

2𝑁

• Proof: (Union bound)
Pr Coll 𝑞, 𝑁 = Pr ∃ 𝑖, 𝑗 𝑠𝑡 𝑦𝑖 = 𝑦𝑗

≤ σ𝑖,𝑗 Pr 𝑦𝑖 = 𝑦𝑗 = 𝑞
2

1

𝑁
=

𝑞(𝑞−1)

2𝑁

8

Lower bound
• If we choose 𝑦1, … 𝑦𝑞 uniformly at random

from {1,…,N} and 𝑞 ≤ √2𝑁, the probability of
collision is lower bounded by:

Coll 𝑞, 𝑁 ≥ 1 − 𝑒−
𝑞 𝑞−1

2𝑁 ≥
𝑞(𝑞−1)

4𝑁

• Proof: NoColli = Event no collision in 𝑦1, … 𝑦𝑖
Pr[NoCollq] = Pr[NoColl1] Pr[NoColl2|NoColl1] …
Pr[NoCollq|NoCollq-1]

Pr[NoColl1] = 1

Pr[NoColli|NoCollii-1] = 1- (i-1)/N

9

Lower bound

• If we choose 𝑦1, … 𝑦𝑞 uniformly at random from

{1,…,N} and 𝑞 ≤ √2𝑁, the probability of collision
is lower bounded by:

Coll 𝑞, 𝑁 ≥ 1 − 𝑒−
𝑞 𝑞−1

2𝑁 ≥
𝑞(𝑞−1)

4𝑁

• Proof: NoColli = Event no collision in 𝑦1, … 𝑦𝑖
Pr[NoCollq] = ∏ (1- i/N)

Pr[NoCollq] ≤ ∏i e-i/N ≤ e- ∑ i/N = e- q(q-1)/2N

1- Pr[NoCollq] ≥ 1- e- q(q-1)/2N

≥ q(q-1)/4N
10

Lower bound
• If we choose 𝑦1, … 𝑦𝑞 uniformly at random

from {1,…,N} and 𝑞 ≤ √2𝑁, the probability of
collision is lower bounded by:

𝑞(𝑞−1)

4𝑁
≤ Coll 𝑞, 𝑁 ≤

𝑞(𝑞−1)

2𝑁

If 𝑞 = Θ 𝑁 , then Coll 𝑞, 𝑁 is approx. ½

Birthday paradox: N = 365, q = 23

Hash functions: 𝑁 = 2𝑛, 𝑞 = 2𝑛/2

11

N=106

samples n

Collision probability

12

Generic attack on collision resistant
hash functions

Let H: M  {0,1}n be a hash function (|M| >> 2𝑛)

Generic alg. to find a collision in time O(𝟐𝒏/𝟐) hashes

Algorithm:
1. Choose 2𝑛/2 random messages in M: m1, …, m 2𝑛/2 (distinct

w.h.p)

2. For i = 1, …, 2𝑛/2 compute ti = H(mi)
3. Look for a collision (ti = tj)
4. If not found, got back to step 1

Running time: O(𝟐𝒏/𝟐) (space O(𝟐𝒏/𝟐))

13

Sample C.R. hash functions: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

digest generic

function size (bits) Speed (MB/sec) attack time

SHA-1 160 153 280

SHA-256 256 111 2128

SHA-512 512 99 2256

N
IST stan

d
ard

s

Best known collision finder for SHA-1 requires 251 hash evaluations

14

Security experiment for MAC

• Experiment ExpΠ,𝐴
MAC 𝑛 :

1. Choose 𝑘 ← 𝐺𝑒𝑛(𝑛)

2. m,t ← 𝐴
𝑇𝑎𝑔()

𝑛

3. Output 1 if Ver(m,t) = 1 and m was not queried
to the Tag() oracle

4. Output 0 otherwise

We say that (Gen, Tag,Ver) is a secure MAC if:

For every PPT adversary 𝐴 = (𝐴1, 𝐴2):

Pr[ExpΠ,𝐴
MAC 𝑛 = 1] is negligible in n

15

MACs from Collision Resistance

Let (Tag,Ver) be a MAC for short messages over (K,M)

Let H: M’  M be a collision resistant hash function

Def: (Tag’, Ver’) over (K, M’) as:

Tag’(k,m) = Tag(k,H(m)) Ver’(k,m,t) = Ver(k,H(m),t)

Thm: If (Tag,Ver) is a secure MAC and H is collision resistant

then (Tag’, Ver’) is a secure MAC.

Example: (k,m) = CBC-MAC(k, SHA-256(m)) is a secure MAC.

16

MACs from Collision Resistance

Collision resistance is necessary for security:

Suppose adversary can find m0  m1 s.t. H(m0) = H(m1)

Then: (Tag’,Ver’) is insecure under chosen msg attack

step 1: adversary asks for t ⟵Tag(k, m0)

step 2: output (m1 , t) as forgery

Tag’(k, m) = Tag(k, H(m)) ; Ver’(k, m, t) = Ver(k, H(m), t)

17

The Merkle-Damgard iterated construction

Thm: h collision resistant ⇒ H collision resistant

Can we use H(.) to directly build a MAC?

h h h

m[0] m[1] m[2] m[3] ll t

h
IV

(fixed)

H(m)

18

MAC from a Merkle-Damgard Hash Function

H: X≤L ⟶ T a C.R. Merkle-Damgard Hash Function

Attempt #1: Tag(k, m) = H(k ll m)

This MAC is insecure because:

Given H(k ll m) can compute H(k ll m ll t ll w) for any w.

Given H(k ll m) can compute H(k ll m ll w) for any w.

Given H(k ll m) can compute H(w ll k ll m ll t) for any w.

Anyone can compute H(k ll m) for any m.

19

Most widely used MAC on the Internet.

H: hash function.
example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

HMAC: S(k, m) = H(kopad ll H(kipad ll m))HMAC: Tag(k,M) = H(k ⊕opad, H(k ⊕ ipad || m))

Standardized method: HMAC (Hash-MAC)

20

HMAC in pictures

h h

m[0] m[1] m[2] ll PB

h

h
tag

> > >h

k⨁ipad

IV
(fixed)

>

>
IV

(fixed)

h
>

k⨁opadk1

k2

21

Applications of hash functions:
Merkle trees

22

Authenticate a file using its hash

F

M

ServerClient
Write file

Read file

Check integrity

𝑀 = 𝐻 (𝐹)

F

Store

Check 𝑀 = 𝐻 (𝐹)

F

23

How to authenticate multiple files?

1. Compute and store a hash per file
+ Fast to check integrity and update file

- Linear storage on client

F2

Fn

F1M1

M2

Mn

ServerClient

Write file

Read file

Check integrity

𝑀1 = 𝐻 (𝐹1)

𝑀2 = 𝐻(𝐹2)

𝑀𝑛 = 𝐻(𝐹𝑛)

24

How to authenticate multiple files?

2. Compute and store a hash for all files
+ Small storage on client

- Linear time to check integrity and update file

F2

Fn

F1

MF

ServerClient

Write file

Read file

Check integrity

𝑀𝐹 = 𝐻(𝐹1| 𝐹2 | … ||𝐹𝑛)

25

Merkle trees

• Introduced by Ralph Merkle, 1979

– “Classic” cryptographic construction

– Involves combining hash functions on binary tree
structure

• An efficient data structure with many
practical applications

• Constant amount of storage on client

• Logarithmic update and verification cost

26

Merkle tree data structure

H(v10 || v11)

vi =Hash(Fi)

• Binary tree, nodes are assigned fixed-size values

• Files associated to each leaf

v=Hash(vleft || vright)

Files

Leaves

Interior nodes
v0 v1

v00 v01

F1

H(v0 || v1)

H(F1) H(F2) H(F4)H(F3)

H(v00 || v01)

F2 F3 F4

v10 v11

27

How to authenticate multiple files?

F2

Fn

F1

ServerClient

F1

H(v0 || v1)

H(F1) H(F2) H(F4)H(F3)

H(v00 || v01)

F2 F3 F4

H(v10 || v11)

Store root

28

Read/authenticate file

F2

Fn

F1

ServerClient

F1

H(v0 || v1)

H(F1) H(F2) H(F4)H(F3)

H(v00 || v01)

F2 F3 F4

H(v10 || v11)

Store root

Read file

Read siblings on
path to the root

O(log n) cost

29

Write/authenticate file

F2

Fn

F1

ServerClient

F1

H(v0 || v1)

H(F1) H(F2) H(F4)H(F3)

H(v00 || v01)

F2 F3 F4

H(v10 || v11)

Store root

Write file

- Read siblings on
path to the root
- Modify nodes
on path to root

O(log n) cost

30

Number theory review

31

• An integer p > 1 is a prime number iff its only positive divisors
are 1 and p

- E.g., 3,5,7,11,13

• Otherwise, an integer that has other divisors is called
composite

- E.g., 4,6,8,10,25,39

• Theorem [Fundamental theorem of arithmetic]

Any integer a > 1 can be factored in a unique way as

where p1 < p2 < ... < pt are primes and ai are positive integers

• Theorem [Infinite prime numbers]

The number of prime numbers is infinite

Prime Numbers

ta

t

aa
pppa ...21

21

32

Notation

From here on:

• N denotes a positive integer.

• p denote a prime.

Notation: 𝑍𝑁 = 0,1, …𝑁 − 1 group of size N

Can do addition and multiplication modulo N

33

Modular arithmetic

Examples: let N = 12

9 + 8 = 5 in

5 × 7 = 11 in

5 − 7 = 10 in

Arithmetic in works as you expect, e.g x⋅(y+z) = x⋅y + x⋅z in

34

Greatest common divisor
Def: For integers x, y: gcd(x, y) is the greatest common
divisor d such that d|x and d|y

Example: gcd(12, 18) = 6

Fact: for all integers x, y there exist a, b such that

a⋅x + b⋅y = gcd(x,y)

Coefficients a,b can be found efficiently using the extended
Euclidean algorithm

If gcd(x,y)=1 we say that x and y are relatively prime
Example: gcd(14,25) = 1

35

Facts on gcd

Proposition: If c|ab and gcd(a,c) = 1, then c|b

Proof: If c|ab, there exists a value u such that:

cu = ab

Since gcd(a,c) =1, there exists some constants v
and w such that: av + cw = 1

Multiply by b: avb +cwb = b ⇒ cuv + cwb = b

⇒ c(uv+wb) = b ⇒ c|b

Corolary: If p is prime and p|ab, then p|a or p|b

Proof: If p prime, then p|a or gcd(p,a) = 1. Then
p|a or p|b

36

Modular inversion
Over rationals, inverse of 2 is ½ . What about 𝑍𝑁 ?

Definition: The multiplicative inverse of x in 𝑍𝑁 is
an element y in 𝑍𝑁 such that x ⋅ 𝑦 = 1 in 𝑍𝑁

y is denoted x-1

Example: Let N be an odd integer. What is the
inverse of 2 in 𝑍𝑁?

2 ⋅
𝑁 + 1

2
= N+ 1 = 1 mod N

37

Acknowledgement

Some of the slides and slide contents are taken from
http://www.crypto.edu.pl/Dziembowski/teaching
and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this
material is currently granted without fee provided that copies are made only for personal or
classroom use, are not distributed for profit or commercial advantage, and that new copies
bear this notice and the full citation.

We have also used slides from Prof. Dan Boneh online cryptography course at

Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

38

http://www.crypto.edu.pl/Dziembowski/teaching
http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

