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Announcements
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• Homework 3 will be out today
– Due date Fri 03/23

• Distinguished speaker on Thu 03/22 
– Location 97 Cargill, 3-4:30pm

– Prof Mike Reiter, UNC Chappel Hill

– Title: “Side channels in multi-tenant environments”

– Extra credit for next homework: submit a paragraph 
about his talk

• If anyone is interested in meeting him 4:30-5pm, 
please email me 



Recap

• Collision-resistant hash functions are useful 
for many tasks

• Constructing hash functions using Merkle-
Daamgard paradigm
– Traditional designs: MD5, SHA-1, SHA-2

• SHA-3 is the new standard
– Explicit collision found in MD5

– Structural waeknesses in SHA-1

• Birthday paradox implies n/2 level of security 
for n-bit hash function in best case
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Outline

• Birthday attack

– Prove lower bound

– Generic attack on hash functions

• Construction of HMAC

– More efficient than CBC-MAC

• Applications of hash functions

– Merkle trees

• Introduction to number theory
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Collision-resistant hash functions

a hash function
H : {0,1}* → {0,1}n

short H(m)

long m

Requirement: it should be hard to find a pair (m,m’) such that
H(m) =H(m’)

a “collision”collision-resistance
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Hash functions – the security definition 

outputs (m,m’)

security parameter
n

H is a collision-resistant hash function ifA

polynomial-time
adversary A

Pr[ A outputs m, m’ such that H(m)=H(m’)]
is negligible
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Birthday paradox

• If we choose q elements 𝑦1, … 𝑦𝑞 at random 

from {1,…,N}, what is the probability that 
there exists i and j such that 𝑦𝑖 = 𝑦𝑗 ?

What is the probability that two people have 
the same birthday?

365 possible 
days
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Upper bound

• If we choose 𝑦1, … 𝑦𝑞 uniformly at random 

from {1,…,N}, the probability of collision is 
upper bounded by:

Coll 𝑞, 𝑁 ≤
𝑞(𝑞−1)

2𝑁

• Proof: (Union bound)
Pr Coll 𝑞, 𝑁 = Pr ∃ 𝑖, 𝑗 𝑠𝑡 𝑦𝑖 = 𝑦𝑗

≤ σ𝑖,𝑗 Pr 𝑦𝑖 = 𝑦𝑗 = 𝑞
2

1

𝑁
=

𝑞(𝑞−1)

2𝑁
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Lower bound
• If we choose 𝑦1, … 𝑦𝑞 uniformly at random 

from {1,…,N} and 𝑞 ≤ √2𝑁, the probability of 
collision is lower bounded by:

Coll 𝑞, 𝑁 ≥ 1 − 𝑒−
𝑞 𝑞−1

2𝑁 ≥
𝑞(𝑞−1)

4𝑁

• Proof:  NoColli = Event no collision in 𝑦1, … 𝑦𝑖
Pr[NoCollq] = Pr[NoColl1] Pr[NoColl2|NoColl1] … 
Pr[NoCollq|NoCollq-1]

Pr[NoColl1] = 1

Pr[NoColli|NoCollii-1] = 1- (i-1)/N
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Lower bound

• If we choose 𝑦1, … 𝑦𝑞 uniformly at random from 

{1,…,N} and 𝑞 ≤ √2𝑁, the probability of collision 
is lower bounded by:

Coll 𝑞, 𝑁 ≥ 1 − 𝑒−
𝑞 𝑞−1

2𝑁 ≥
𝑞(𝑞−1)

4𝑁

• Proof:  NoColli = Event no collision in 𝑦1, … 𝑦𝑖
Pr[NoCollq] = ∏ (1- i/N)

Pr[NoCollq] ≤ ∏i e-i/N ≤  e- ∑ i/N  = e- q(q-1)/2N

1- Pr[NoCollq] ≥ 1- e- q(q-1)/2N 

≥ q(q-1)/4N
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Lower bound
• If we choose 𝑦1, … 𝑦𝑞 uniformly at random 

from {1,…,N} and 𝑞 ≤ √2𝑁, the probability of 
collision is lower bounded by:

𝑞(𝑞−1)

4𝑁
≤ Coll 𝑞, 𝑁 ≤

𝑞(𝑞−1)

2𝑁

If 𝑞 = Θ 𝑁 , then Coll 𝑞, 𝑁 is approx. ½

Birthday paradox: N = 365, q = 23

Hash functions: 𝑁 = 2𝑛, 𝑞 = 2𝑛/2
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N=106

# samples  n

Collision probability
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Generic attack on collision resistant 
hash functions

Let  H: M  {0,1}n be a hash function    ( |M| >> 2𝑛 )

Generic alg. to find a collision in time   O(𝟐𝒏/𝟐)   hashes

Algorithm:
1. Choose 2𝑛/2 random messages in M:     m1, …, m 2𝑛/2 (distinct 

w.h.p )

2. For i = 1, …, 2𝑛/2 compute    ti = H(mi)    
3. Look for a collision  (ti = tj)
4. If not found, got back to step 1

Running time:  O(𝟐𝒏/𝟐)         (space  O(𝟐𝒏/𝟐) )

13



Sample C.R. hash functions: Crypto++  5.6.0      [ Wei Dai ]

AMD Opteron,   2.2 GHz     ( Linux)

digest generic

function size (bits) Speed  (MB/sec) attack time

SHA-1 160 153 280

SHA-256 256 111 2128

SHA-512 512 99 2256

N
IST stan

d
ard

s

Best known collision finder for SHA-1 requires 251 hash evaluations  
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Security experiment for MAC

• Experiment ExpΠ,𝐴
MAC 𝑛 :

1. Choose 𝑘 ← 𝐺𝑒𝑛(𝑛)

2. m,t ← 𝐴
𝑇𝑎𝑔()

𝑛

3. Output 1 if Ver(m,t) = 1 and m was not queried 
to the Tag() oracle

4. Output 0 otherwise

We say that (Gen, Tag,Ver) is a secure MAC if:

For every PPT adversary 𝐴 = (𝐴1, 𝐴2):

Pr[ExpΠ,𝐴
MAC 𝑛 = 1] is negligible in n
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MACs from Collision Resistance

Let (Tag,Ver)  be a MAC for short messages over (K,M)     

Let  H: M’  M  be a collision resistant hash function

Def:    (Tag’, Ver’)    over   (K, M’)   as:

Tag’(k,m) = Tag(k,H(m))        Ver’(k,m,t) = Ver(k,H(m),t)

Thm:   If  (Tag,Ver)  is a secure MAC and  H  is collision resistant 

then (Tag’, Ver’)  is a secure MAC.

Example:      (k,m) = CBC-MAC(k,  SHA-256(m))   is a secure MAC.
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MACs from Collision Resistance

Collision resistance is necessary for security:

Suppose adversary can find  m0  m1 s.t. H(m0) = H(m1)

Then:   (Tag’,Ver’) is insecure under chosen msg attack

step 1:  adversary asks for  t ⟵Tag(k, m0)

step 2:   output   (m1 , t)   as forgery

Tag’(k, m) = Tag(k, H(m))    ;     Ver’(k, m, t) = Ver(k, H(m), t)
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The Merkle-Damgard iterated construction

Thm:    h collision resistant   ⇒ H collision resistant

Can we use  H(.)  to directly build a MAC?

h h h

m[0] m[1] m[2] m[3]  ll t

h
IV

(fixed)

H(m)
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MAC from a Merkle-Damgard Hash Function

H: X≤L ⟶ T a C.R. Merkle-Damgard Hash Function

Attempt #1:     Tag(k, m) = H( k ll m)

This MAC is insecure because:

Given  H( k ll m)   can compute   H( k ll m ll t ll w )  for any  w.

Given  H( k ll m)   can compute   H( k ll m ll w )  for any  w.

Given  H( k ll m)   can compute   H( w ll k ll m ll t)  for any  w.

Anyone can compute   H( k ll m )  for any  m.
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Most widely used MAC on the Internet.

H:   hash function.      
example:   SHA-256 ;    output is 256 bits

Building a MAC out of a hash function:

HMAC:       S( k, m ) =  H( kopad ll H( kipad ll m )  )HMAC: Tag(k,M) = H(k ⊕opad, H(k ⊕ ipad || m)) 

Standardized method:   HMAC  (Hash-MAC)
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HMAC in pictures

h h

m[0] m[1] m[2]  ll PB

h

h
tag

> > >h

k⨁ipad

IV
(fixed)

>

>
IV

(fixed)

h
>

k⨁opadk1

k2
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Applications of hash functions: 
Merkle trees
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Authenticate a file using its hash

F

M

ServerClient
Write file

Read file

Check integrity

𝑀 = 𝐻 (𝐹)

F

Store

Check 𝑀 = 𝐻 (𝐹)

F
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How to authenticate multiple files?

1. Compute and store a hash per file
+ Fast to check integrity and update file

- Linear storage on client

F2

Fn

F1M1

M2

Mn

ServerClient

Write file

Read file

Check integrity

𝑀1 = 𝐻 (𝐹1)

𝑀2 = 𝐻(𝐹2)

𝑀𝑛 = 𝐻(𝐹𝑛)
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How to authenticate multiple files?

2. Compute and store a hash for all files
+ Small storage on client

- Linear time to check integrity and update file

F2

Fn

F1

MF

ServerClient

Write file

Read file

Check integrity

𝑀𝐹 = 𝐻(𝐹1| 𝐹2 | … ||𝐹𝑛)
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Merkle trees

• Introduced by Ralph Merkle, 1979

– “Classic” cryptographic construction

– Involves combining hash functions on binary tree 
structure

• An efficient data structure with many 
practical applications

• Constant amount of storage on client

• Logarithmic update and verification cost
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Merkle tree data structure

H(v10 || v11)

vi =Hash(Fi )

• Binary tree, nodes are assigned fixed-size values

• Files associated to each leaf

v=Hash(vleft || vright )

Files

Leaves

Interior nodes
v0 v1

v00 v01

F1

H(v0 || v1)

H(F1) H(F2) H(F4)H(F3)

H(v00 || v01)

F2 F3 F4

v10 v11
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How to authenticate multiple files?

F2

Fn

F1

ServerClient

F1

H(v0 || v1)

H(F1) H(F2) H(F4)H(F3)

H(v00 || v01)

F2 F3 F4

H(v10 || v11)

Store root

28



Read/authenticate file

F2

Fn

F1

ServerClient

F1

H(v0 || v1)

H(F1) H(F2) H(F4)H(F3)

H(v00 || v01)

F2 F3 F4

H(v10 || v11)

Store root

Read file

Read siblings on 
path to the root

O(log n) cost
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Write/authenticate file

F2

Fn

F1

ServerClient

F1

H(v0 || v1)

H(F1) H(F2) H(F4)H(F3)

H(v00 || v01)

F2 F3 F4

H(v10 || v11)

Store root

Write file

- Read siblings on 
path to the root
- Modify nodes 
on path to root

O(log n) cost
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Number theory review
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• An integer p > 1 is a prime number iff its only positive divisors 
are 1 and p

- E.g., 3,5,7,11,13

• Otherwise, an integer that has other divisors is called 
composite

- E.g., 4,6,8,10,25,39

• Theorem [Fundamental theorem of arithmetic]

Any integer a > 1 can be factored in a unique way as

where p1 < p2 < ... < pt are primes and ai are positive integers

• Theorem [Infinite prime numbers]

The number of prime numbers is infinite

Prime Numbers

ta

t

aa
pppa ...21

21
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Notation

From here on:   

• N denotes a positive integer. 

• p denote a prime.

Notation: 𝑍𝑁 = 0,1, …𝑁 − 1 group of size N

Can do addition and multiplication modulo N   
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Modular arithmetic

Examples:      let    N = 12

9 + 8  =   5       in    

5 × 7  =  11      in    

5 − 7  =   10     in    

Arithmetic in       works as you expect, e.g x⋅(y+z) = x⋅y + x⋅z in  
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Greatest common divisor
Def:   For integers  x, y:     gcd(x, y)   is the greatest common 
divisor d such that d|x and d|y

Example: gcd( 12, 18 )  =   6

Fact:   for all integers   x, y   there exist  a, b   such that

a⋅x + b⋅y = gcd(x,y)

Coefficients a,b can be found efficiently using the extended 
Euclidean algorithm

If  gcd(x,y)=1 we say that x and y are relatively prime 
Example: gcd(14,25) = 1
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Facts on gcd

Proposition: If c|ab and gcd(a,c) = 1, then c|b

Proof: If c|ab, there exists a value u such that:

cu = ab

Since gcd(a,c) =1, there exists some constants v 
and w such that: av + cw = 1

Multiply by b: avb +cwb = b ⇒ cuv + cwb = b

⇒ c(uv+wb) = b ⇒ c|b

Corolary: If p is prime and p|ab, then p|a or p|b

Proof: If p prime, then p|a or gcd(p,a) = 1. Then 
p|a or p|b
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Modular inversion
Over rationals, inverse of 2 is  ½ .  What about 𝑍𝑁 ?

Definition:    The multiplicative inverse of x in 𝑍𝑁 is 
an element y in 𝑍𝑁 such that x ⋅ 𝑦 = 1 in 𝑍𝑁

y is denoted x-1  

Example:    Let N be an odd integer. What is the 
inverse of 2 in 𝑍𝑁?

2 ⋅
𝑁 + 1

2
= N+ 1 = 1 mod N
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