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Announcements
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• Schedule
– Next week vacation on Monday (President’s Day)
– Class canceled on Thursday 02/22
– Normal schedule on Monday 02/26

• Assignments
– HW 2 due on Thu 02/15
– Programming project Thu 02/15 – Mon 02/26

• Midterm exam
– Thursday 03/01
– Topics

• Notions of security for encryption (PS, EAV, CPA, CCA)
• Modes of operation for encryption (CBC, CTR)
• PRG, PRF, PRP
• MAC for integrity
• Authenticated encryption



Recap

• To encrypt longer messages, use CBC or CTR 
mode
– Both have CPA security
– IV needs to be randomized

• CTR mode has some advantages
– Parallelizable
– Better security

• CBC encryption has padding vulnerabilities
• Authenticated encryption schemes are CCA 

secure
– Will study them soon
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CBC encryption

Let F be a PRP; F: K × {0,1}n ⟶ {0,1}n

EncCBC(k,m):    choose random IV∈ {0,1}n and do:

F(k,) F(k,) F(k,)

m[1] m[2] m[3] m[L]IV

 

F(k,)



c[1] c[2] c[3] c[L]IV

ciphertext

4𝑐𝑖 = 𝐹𝑘(𝑐𝑖−1⊕𝑚𝑖)



Decryption circuit

F-1(k,) F-1(k,) F-1(k,)

m[1] m[2] m[3] m[L]

 

F-1(k,)



c[1] c[2] c[3] c[L]IV

In symbols:    c[1] = Fk( IV⨁m[1] ) ⇒ m[1] = Fk
-1(c[1]) ⨁ IV

5𝑚𝑖 = F−1
𝑘(𝑐𝑖) ⊕ 𝑐𝑖−1



A CBC technicality:  padding

F(k,) F(k,) F(k,)

m[1] m[2] m[3] m[L]  ll pad

 

F(k,)



c[1] c[2] c[3] c[L]IV

IV

TLS:    for n>0,   n byte pad is

if no pad needed, add a dummy block

n n ⋯n n 
removed
during
decryption
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TLS bugs in older versions

IV for CBC is predictable:     (chained IV)

- IV for next record is last ciphertext block of 
current record.

- Not CPA secure. 

Padding oracle:     during decryption

- If pad is invalid send decryption failed alert

- If mac is invalid send bad_record_mac alert

⇒ attacker learns information about plaintext 

Lesson:   when decryption fails, do not explain why
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Padding oracle attack

IV

m1

c1 c2

m2

𝑐2 = 𝐹𝑘 𝑐1 ⊕𝑚2

𝑚2 = 𝐹𝑘
−1 c2 ⊕ 𝑐1

2-block message

3-block ciphertext

𝑐1
′ = 𝑐1 ⊕Δ

𝑚2
′ = 𝑚2 ⊕Δ

Malleability

• Attacker can query ciphertexts
to padding oracle

• Oracle responds with “bad 
padding” if message not 
correctly padded

• Goal: given ciphertext, find 
last block of message
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Find message length
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IV

m1

c1 c2

bbb

- Modify first byte of c1

- If decryption fails, then oracle checks all L bytes of m2, 
thus b=L

- Else modify second byte of c1

- If decryption fails, then b = L-1
- Continue until find b

Length L bytes

Padding b 
bytes

Decryption fails if 
last b bytes do not 
have value b



- Learn last byte B of m2 (before padding) 
- Intuition: Induce a valid message of length b+1
- For all i:

- Δ𝑖= 0…0 𝑖 𝑏 + 1 ⊕ 𝑏 … 𝑏 + 1 ⊕ 𝑏

- Query c′1 = 𝑐1 + Δ𝑖 to padding oracle 
- But 𝑚2

′ = 𝑚2 + Δ𝑖 = 0…0 𝐵⊕ 𝑖 𝑏 + 1 … 𝑏 + 1
- If 𝐵 ⊕ 𝑖 = 𝑏 + 1, decryption succeeds

- Exercise: extend it to recover all bytes from last block

Find message bytes
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IV

m1

c1 c2

bbb

Length L bytes

Padding b 
bytes

Decryption fails if 
last b bytes do not 
have value b

B



Integrity

• Active adversaries

– Can modify messages/ciphertexts in transit

• Protect message integrity

– Message received by Bob is the original one sent 
by Alice

– Message was not modified by adversary

• Scenarios

– Secure communication on network

– Protect files stored on disk
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Message Authentication

Alice Bob

(m, t=Tagk(m))

Eve can see (m, t=Tagk(m))

She should not be able to compute a 
valid tag t’ on any other message m’.

k k

m
verifies if
t=Tagk(m)

- Message was sent by Alice
- Message was not modified
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Integrity requires a secret key

• Attacker can easily modify message m and re-compute 
CRC.

• CRC designed to detect random, not malicious errors.

Alice Bob

message  m tag

Generate tag:
tag  CRC(m)

Verify tag:
Ver(m, tag)  = `yes’

?
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Message authentication – multiple 
messages

Alice Bob
(m1, t1 =Tagk(m1))

Eve should not be able to 
compute a valid tag t’ on any 
other message m’.

k k

(m2, t2 =Tagk(m2))m2

m1

(mw, tw =Tagk(mw))mt

. . .

. . .



A mathematical view
K – key space

M – plaintext space

T - set of tags

A Message Authentication Code (MAC) scheme is a pair (Tag,  Ver), 
where

 Tag : K × M → T is an tagging algorithm,
 Ver:K × M × T → {yes, no} is a verification algorithm.

We will sometimes write Tagk(m) and Verk(m,t) instead of 
Tag(k,m) and Ver(k,m,t).

Correctness
it should always holds that:

Verk(m,Tagk(m)) = yes. 15



security parameter
n

selects random a k Є {0,1}n

oracle

m1

mw

. . .

(m1, t=Tagk(m1))

(mw, t=Tagk(mw))

We say that the adversary  wins the MAC game if at the end 
outputs (m’,t’) such that

Verk(m’,t’) = yes
and

m’ ≠ m1,...,mw

adversary
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The security definition

We say that (Tag,Ver) is secure if

A

polynomial-time
adversary A

P[A wins MAC Game] is negligible (in n)
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Security experiment for MAC
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• Experiment ExpΠ,𝐴
MAC 𝑛 :

1. Choose 𝑘 ← 𝐺𝑒𝑛(𝑛)

2. m,t ← 𝐴
𝑇𝑎𝑔()

𝑛

3. Output 1 if Ver(m,t) = 1 and m was not queried 
to the Tag() oracle

4. Output 0 otherwise

(Gen,Tag,Ver) is a secure (existential unforgeable) MAC if:

For every PPT adversary 𝐴:

Pr[ExpΠ,𝐴
MAC 𝑛 = 1] is negligible in n



Let  (Tag,Ver) be a MAC.

Suppose Ver(k,m) is always 5 bits long

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for any message

It depends on the details of the MAC

No, an attacker can simply guess the tag for messages

MAC example
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Encryption does not provide integrity!

• Stream ciphers

– Enc(k, m)  =  m ⊕ G(k), G a secure PRG

– Modify 1 bit in c implies one bit modification in 
the decrypted message

• Block ciphers

– CTR: Enc is one-time pad with output of PRF 
function

– Can modify the ciphertext and decrypt to a 
different message
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Example:  protecting system files

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password
– Then:   secure MAC   ⇒ all modified files will be detected

Suppose at install time the system computes:

F1

t1 = 
Tag(k,F1)

F2

t2 = 
Tag(k,F2)

Fn

tn = 
Tag(k,Fn)

⋯ k derived from
user’s password

filename filename filename
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A simple construction from a block cipher

Let 
F : {0,1}n × {0,1}n → {0,1}n

be a PRF. 

A MAC scheme that works only for  
messages m Є {0,1}n :

• Tag(k,m) = F(k,m)
• Ver(k,m,t): Check t=F(k,m)

Fkk

m

F(k,m)
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Security

Theorem: If  F : {0,1}n × {0,1}n → {0,1}n is a secure PRF,  then  

the PRF-MAC scheme is a secure MAC.

In particular,  for every PPT MAC adversary A attacking the 

MAC there exists a PPT PRF adversary D attacking F  s.t.:

Pr[ExpΠ,𝐴
MAC 𝑛 = 1]  AdvF,𝐷

PRF + 1/2n

AdvE,𝐷
PR𝐹 = |𝑷𝒓 𝑫𝑭𝒌 ⋅ 𝒏 = 𝟏 − 𝑷𝒓[𝑫𝒇 ⋅ 𝒏 | = 𝟏]|
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How to MAC longer messages?

• AES:   a MAC for 16-byte messages.

• Main question:    how to convert Small-MAC into a 
Big-MAC  ?

• Two main constructions used in practice:
– CBC-MAC (banking – ANSI X9.9, X9.19,   FIPS 186-3)
– HMAC (Internet protocols:  SSL, IPsec, SSH, …)

• Both convert a small-PRF into a big-PRF.
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Longer messages: Idea 1

Fk

m1

F(k,m1)

Fk

mL

F(k,mL)

. . .

• Divide the message in blocks m1,...,mL

• Authenticate each block separately

This doesn’t work!

25



t = Tagk(m):

m:

t’ = perm(t):

m’ = perm(m):

perm

Then t’ is a valid tag on m’. 

What goes wrong?

26



Longer messages: Idea 2

Fk

m1

F(k,x1)

Fk

mL

F(k,xL)

. . .

Add a counter to each block.

This doesn’t work either!

1 L

x1 xL

27



xi

m:

t = Tagk(m):

m’ = a prefix of m:

t’ = a prefix of t:

Then t’ is a valid tag on m’. 

mii
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Longer messages: Idea 3

Fk

m1  

F(k,x1)

Fk

mL   

F(k,xL)

. . .

Add l := |m| to each block

This doesn’t work either!

1 Ll l

x1 xL

29



What goes wrong? 

xi

m:

t = Tagk(m):

m’:

t’ = Tagk(m’):

m’’ = first half from m || second half from m’

t’’ = first half from t || second half from t’

Then t’’ is a valid tag on m’’.

m1  1l
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Longer messages: Idea 4

Fk

F(k,x1)

Fk

mL  

F(k,xL)

. . .

Add a fresh random value to each block!

This works!

Ll

x1 xL

rm1  1lr
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32pad with zeroes if needed

Fk

F(k,x1)

m

1lr

Fk

F(k,x2)

m22r

Fk

F(k,xL)

mLLr

m1 m2 mL
. . . 

. . . 

. . . 

m1

l

ll

x1
x2 xL

|mi| = n/4

r is chosen randomly

r

tagk(m)

000

n – block length
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This construction can be proven secure

Theorem

Assuming that

F : {0,1}n × {0,1}n → {0,1}n is a pseudorandom function

the  construction from the previous slide is secure.
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Problem:

The tag is 4 times longer than the message...

We can do much better!



CBC-MAC

m

m1 m2 m3 mL
. . . 

0

Fk Fk Fk Fk Fk

tagk(m)

F : {0,1}n × {0,1}n → {0,1}n - a PRF

Theorem
Assuming that F : {0,1}n × {0,1}n → {0,1}n is a pseudorandom
function and messages of fixed length are tagged, then CBC-MAC 
construction is secure.
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CBC-MAC vs CBC-Enc

• Different security properties
– CBC-Enc is CPA secure encryption

– CBC-MAC is secure MAC

• Initialization
– CBC-Enc uses random IV

– CBC-MAC uses first block fixed at 0

• Output
– CBC-Enc outputs all intermediate blocks (to 

decrypt)

– CBC-MAC outputs only last block
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Key insights

• Integrity vs confidentiality
– Complementary properties

– Both are needed in practice 

• Message Authentication Codes (MAC)
– Secret key needed for integrity

– Security definition

– Encryption not sufficient for integrity

• Constructions
– MACs on single block (e.g., 128-bit) can be built from 

PRFs

– CBC-MAC for integrity on longer messages
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