
CS 4770: Cryptography

CS 6750: Cryptography and
Communication Security

Alina Oprea

Associate Professor, CCIS

Northeastern University

February 12 2018

Announcements

2

• Schedule
– Next week vacation on Monday (President’s Day)
– Class canceled on Thursday 02/22
– Normal schedule on Monday 02/26

• Assignments
– HW 2 due on Thu 02/15
– Programming project Thu 02/15 – Mon 02/26

• Midterm exam
– Thursday 03/01
– Topics

• Notions of security for encryption (PS, EAV, CPA, CCA)
• Modes of operation for encryption (CBC, CTR)
• PRG, PRF, PRP
• MAC for integrity
• Authenticated encryption

Recap

• To encrypt longer messages, use CBC or CTR
mode
– Both have CPA security
– IV needs to be randomized

• CTR mode has some advantages
– Parallelizable
– Better security

• CBC encryption has padding vulnerabilities
• Authenticated encryption schemes are CCA

secure
– Will study them soon

3

CBC encryption

Let F be a PRP; F: K × {0,1}n ⟶ {0,1}n

EncCBC(k,m): choose random IV∈ {0,1}n and do:

F(k,) F(k,) F(k,)

m[1] m[2] m[3] m[L]IV

 

F(k,)



c[1] c[2] c[3] c[L]IV

ciphertext

4𝑐𝑖 = 𝐹𝑘(𝑐𝑖−1⊕𝑚𝑖)

Decryption circuit

F-1(k,) F-1(k,) F-1(k,)

m[1] m[2] m[3] m[L]

 

F-1(k,)



c[1] c[2] c[3] c[L]IV

In symbols: c[1] = Fk(IV⨁m[1]) ⇒ m[1] = Fk
-1(c[1]) ⨁ IV

5𝑚𝑖 = F−1
𝑘(𝑐𝑖) ⊕ 𝑐𝑖−1

A CBC technicality: padding

F(k,) F(k,) F(k,)

m[1] m[2] m[3] m[L] ll pad

 

F(k,)



c[1] c[2] c[3] c[L]IV

IV

TLS: for n>0, n byte pad is

if no pad needed, add a dummy block

n n ⋯n n
removed
during
decryption

6

TLS bugs in older versions

IV for CBC is predictable: (chained IV)

- IV for next record is last ciphertext block of
current record.

- Not CPA secure.

Padding oracle: during decryption

- If pad is invalid send decryption failed alert

- If mac is invalid send bad_record_mac alert

⇒ attacker learns information about plaintext

Lesson: when decryption fails, do not explain why

7

Padding oracle attack

IV

m1

c1 c2

m2

𝑐2 = 𝐹𝑘 𝑐1 ⊕𝑚2

𝑚2 = 𝐹𝑘
−1 c2 ⊕ 𝑐1

2-block message

3-block ciphertext

𝑐1
′ = 𝑐1 ⊕Δ

𝑚2
′ = 𝑚2 ⊕Δ

Malleability

• Attacker can query ciphertexts
to padding oracle

• Oracle responds with “bad
padding” if message not
correctly padded

• Goal: given ciphertext, find
last block of message

8

Find message length

9

IV

m1

c1 c2

bbb

- Modify first byte of c1

- If decryption fails, then oracle checks all L bytes of m2,
thus b=L

- Else modify second byte of c1

- If decryption fails, then b = L-1
- Continue until find b

Length L bytes

Padding b
bytes

Decryption fails if
last b bytes do not
have value b

- Learn last byte B of m2 (before padding)
- Intuition: Induce a valid message of length b+1
- For all i:

- Δ𝑖= 0…0 𝑖 𝑏 + 1 ⊕ 𝑏 … 𝑏 + 1 ⊕ 𝑏

- Query c′1 = 𝑐1 + Δ𝑖 to padding oracle
- But 𝑚2

′ = 𝑚2 + Δ𝑖 = 0…0 𝐵⊕ 𝑖 𝑏 + 1 … 𝑏 + 1
- If 𝐵 ⊕ 𝑖 = 𝑏 + 1, decryption succeeds

- Exercise: extend it to recover all bytes from last block

Find message bytes

10

IV

m1

c1 c2

bbb

Length L bytes

Padding b
bytes

Decryption fails if
last b bytes do not
have value b

B

Integrity

• Active adversaries

– Can modify messages/ciphertexts in transit

• Protect message integrity

– Message received by Bob is the original one sent
by Alice

– Message was not modified by adversary

• Scenarios

– Secure communication on network

– Protect files stored on disk

11

Message Authentication

Alice Bob

(m, t=Tagk(m))

Eve can see (m, t=Tagk(m))

She should not be able to compute a
valid tag t’ on any other message m’.

k k

m
verifies if
t=Tagk(m)

- Message was sent by Alice
- Message was not modified

12

Integrity requires a secret key

• Attacker can easily modify message m and re-compute
CRC.

• CRC designed to detect random, not malicious errors.

Alice Bob

message m tag

Generate tag:
tag  CRC(m)

Verify tag:
Ver(m, tag) = `yes’

?

13

14

Message authentication – multiple
messages

Alice Bob
(m1, t1 =Tagk(m1))

Eve should not be able to
compute a valid tag t’ on any
other message m’.

k k

(m2, t2 =Tagk(m2))m2

m1

(mw, tw =Tagk(mw))mt

. . .

. . .

A mathematical view
K – key space

M – plaintext space

T - set of tags

A Message Authentication Code (MAC) scheme is a pair (Tag, Ver),
where

 Tag : K × M → T is an tagging algorithm,
 Ver:K × M × T → {yes, no} is a verification algorithm.

We will sometimes write Tagk(m) and Verk(m,t) instead of
Tag(k,m) and Ver(k,m,t).

Correctness
it should always holds that:

Verk(m,Tagk(m)) = yes. 15

security parameter
n

selects random a k Є {0,1}n

oracle

m1

mw

. . .

(m1, t=Tagk(m1))

(mw, t=Tagk(mw))

We say that the adversary wins the MAC game if at the end
outputs (m’,t’) such that

Verk(m’,t’) = yes
and

m’ ≠ m1,...,mw

adversary

16

The security definition

We say that (Tag,Ver) is secure if

A

polynomial-time
adversary A

P[A wins MAC Game] is negligible (in n)

17

Security experiment for MAC

18

• Experiment ExpΠ,𝐴
MAC 𝑛 :

1. Choose 𝑘 ← 𝐺𝑒𝑛(𝑛)

2. m,t ← 𝐴
𝑇𝑎𝑔()

𝑛

3. Output 1 if Ver(m,t) = 1 and m was not queried
to the Tag() oracle

4. Output 0 otherwise

(Gen,Tag,Ver) is a secure (existential unforgeable) MAC if:

For every PPT adversary 𝐴:

Pr[ExpΠ,𝐴
MAC 𝑛 = 1] is negligible in n

Let (Tag,Ver) be a MAC.

Suppose Ver(k,m) is always 5 bits long

Can this MAC be secure?

Yes, the attacker cannot generate a valid tag for any message

It depends on the details of the MAC

No, an attacker can simply guess the tag for messages

MAC example

19

Encryption does not provide integrity!

• Stream ciphers

– Enc(k, m) = m ⊕ G(k), G a secure PRG

– Modify 1 bit in c implies one bit modification in
the decrypted message

• Block ciphers

– CTR: Enc is one-time pad with output of PRF
function

– Can modify the ciphertext and decrypt to a
different message

20

Example: protecting system files

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password
– Then: secure MAC ⇒ all modified files will be detected

Suppose at install time the system computes:

F1

t1 =
Tag(k,F1)

F2

t2 =
Tag(k,F2)

Fn

tn =
Tag(k,Fn)

⋯ k derived from
user’s password

filename filename filename

21

A simple construction from a block cipher

Let
F : {0,1}n × {0,1}n → {0,1}n

be a PRF.

A MAC scheme that works only for
messages m Є {0,1}n :

• Tag(k,m) = F(k,m)
• Ver(k,m,t): Check t=F(k,m)

Fkk

m

F(k,m)

22

Security

Theorem: If F : {0,1}n × {0,1}n → {0,1}n is a secure PRF, then

the PRF-MAC scheme is a secure MAC.

In particular, for every PPT MAC adversary A attacking the

MAC there exists a PPT PRF adversary D attacking F s.t.:

Pr[ExpΠ,𝐴
MAC 𝑛 = 1]  AdvF,𝐷

PRF + 1/2n

AdvE,𝐷
PR𝐹 = |𝑷𝒓 𝑫𝑭𝒌 ⋅ 𝒏 = 𝟏 − 𝑷𝒓[𝑫𝒇 ⋅ 𝒏 | = 𝟏]|

23

How to MAC longer messages?

• AES: a MAC for 16-byte messages.

• Main question: how to convert Small-MAC into a
Big-MAC ?

• Two main constructions used in practice:
– CBC-MAC (banking – ANSI X9.9, X9.19, FIPS 186-3)
– HMAC (Internet protocols: SSL, IPsec, SSH, …)

• Both convert a small-PRF into a big-PRF.

24

Longer messages: Idea 1

Fk

m1

F(k,m1)

Fk

mL

F(k,mL)

. . .

• Divide the message in blocks m1,...,mL

• Authenticate each block separately

This doesn’t work!

25

t = Tagk(m):

m:

t’ = perm(t):

m’ = perm(m):

perm

Then t’ is a valid tag on m’.

What goes wrong?

26

Longer messages: Idea 2

Fk

m1

F(k,x1)

Fk

mL

F(k,xL)

. . .

Add a counter to each block.

This doesn’t work either!

1 L

x1 xL

27

xi

m:

t = Tagk(m):

m’ = a prefix of m:

t’ = a prefix of t:

Then t’ is a valid tag on m’.

mii

28

Longer messages: Idea 3

Fk

m1

F(k,x1)

Fk

mL

F(k,xL)

. . .

Add l := |m| to each block

This doesn’t work either!

1 Ll l

x1 xL

29

What goes wrong?

xi

m:

t = Tagk(m):

m’:

t’ = Tagk(m’):

m’’ = first half from m || second half from m’

t’’ = first half from t || second half from t’

Then t’’ is a valid tag on m’’.

m1 1l

30

Longer messages: Idea 4

Fk

F(k,x1)

Fk

mL

F(k,xL)

. . .

Add a fresh random value to each block!

This works!

Ll

x1 xL

rm1 1lr

31

32pad with zeroes if needed

Fk

F(k,x1)

m

1lr

Fk

F(k,x2)

m22r

Fk

F(k,xL)

mLLr

m1 m2 mL
. . .

. . .

. . .

m1

l

ll

x1
x2 xL

|mi| = n/4

r is chosen randomly

r

tagk(m)

000

n – block length

32

This construction can be proven secure

Theorem

Assuming that

F : {0,1}n × {0,1}n → {0,1}n is a pseudorandom function

the construction from the previous slide is secure.

33

Problem:

The tag is 4 times longer than the message...

We can do much better!

CBC-MAC

m

m1 m2 m3 mL
. . .

0

Fk Fk Fk Fk Fk

tagk(m)

F : {0,1}n × {0,1}n → {0,1}n - a PRF

Theorem
Assuming that F : {0,1}n × {0,1}n → {0,1}n is a pseudorandom
function and messages of fixed length are tagged, then CBC-MAC
construction is secure.

34

CBC-MAC vs CBC-Enc

• Different security properties
– CBC-Enc is CPA secure encryption

– CBC-MAC is secure MAC

• Initialization
– CBC-Enc uses random IV

– CBC-MAC uses first block fixed at 0

• Output
– CBC-Enc outputs all intermediate blocks (to

decrypt)

– CBC-MAC outputs only last block

35

Key insights

• Integrity vs confidentiality
– Complementary properties

– Both are needed in practice

• Message Authentication Codes (MAC)
– Secret key needed for integrity

– Security definition

– Encryption not sufficient for integrity

• Constructions
– MACs on single block (e.g., 128-bit) can be built from

PRFs

– CBC-MAC for integrity on longer messages

36

Acknowledgement

Some of the slides and slide contents are taken from
http://www.crypto.edu.pl/Dziembowski/teaching
and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this
material is currently granted without fee provided that copies are made only for personal or
classroom use, are not distributed for profit or commercial advantage, and that new copies
bear this notice and the full citation.

We have also used slides from Prof. Dan Boneh online cryptography course at

Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

37

http://www.crypto.edu.pl/Dziembowski/teaching
http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

