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Review
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• Logistic regression computes directly

– P 𝑌 = 1 𝑋 = 𝑥

– Assume sigmoid function for hypothesis

– Trained with Gradient Descent

• LDA uses Bayes Theorem to estimate 

– P 𝑌 = 𝑘 𝑋 = 𝑥 =
P 𝑋 = 𝑥 𝑌 = 𝑘 P[𝑌=𝑘]

P[𝑋=𝑥]

– Estimates priors from data

– Assume feature density is Gaussian

• Both are linear classifiers

– Linear decision boundary (hyperplane)



Linear models

3

• Perceptron

• Logistic regression

• LDA 

𝑀𝑎𝑥𝑘



Outline

• Evaluating classifiers

– ROC curves, AUC metric

• Feature selection

– Wrapper

– Filter

– Embedded methods

• Decision trees

– Information gain

– ID3 algorithm
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Confusion Matrix
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F1 score = 2
Precision×Recall

Precision+Recall



Logistic Regression 
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Probabilistic model ℎ𝜃 𝑥 = P 𝑦 = 1 𝑥; 𝜃



Classifiers can be tuned
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• Logistic regression sets by default the 
threshold at 0.5 for classifying positive and 
negative instances

• Some applications have strict constraints on 
false positives (or other metrics)

– Example: very low false positives in security (spam)

• Solution: choose different threshold

T

T

Higher T, lower FP
Lower T,  lower FN



ROC Curves
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• Receiver Operating Characteristic (ROC)
• Determine operating point (e.g., by fixing false positive rate)

Perfect 
classification

Random 
guessing

Better

One classifier for 
fixed threshold



ROC Curves
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• Another useful metric: Area Under the Curve (AUC)
• The closest to 1, the better! 

AUC 
(Area Under 
the Curve)



Supervised Learning 
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Feature selection
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• Feature Selection

• Process for choosing an optimal subset of features
according to a certain criteria

• Why we need Feature Selection:

1. To improve performance (in terms of speed,
predictive power, simplicity of the model).

2. To visualize the data for model selection.

3. To reduce dimensionality and remove noise.



Methods for Feature Selection

• Wrappers
– Select subset of features that gives best prediction 

accuracy (using cross-validation)

– Model-specific

• Filters
– Compute some statistical metrics (correlation 

coefficient, mutual information)

– Select features with statistics higher than threshold

• Embedded methods
– Feature selection done as part of training

– Example: Regularization (Lasso, L1 regularization)
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Wrappers: Search Strategy
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d 2𝑑



Wrappers: Sequential Forward 
Selection
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Backward feature selection starts with all features 
and eliminates backward

accuracy on validation set



Search complexity for sequential 
forward selection
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2𝑑

• Evaluates 
𝑑 𝑑+1

2
features sets instead of 2𝑑



Cross Validation
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• k-fold CV

– Split data into k partitions of equal size

• Leave-one-out CV (LOOCV)

– k=n (validation set only one point)

Select set of features with best validation performance



Filters
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Search Complexity for Filter Methods
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Embedded methods: Regularization

• L1 norm for regularization

• No closed form solution

• Algorithms based on gradient descent or 
quadratic programming

𝐽 𝜃 = ෍

𝑖=1

𝑛

ℎ𝜃 𝑥 𝑖 − 𝑦(𝑖)
2
+ 𝜆෍

𝑗=1

𝑑

|𝜃𝑗|

Squared 
Residuals

Regularization
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Lasso regression



Embedded methods: Regularization
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Summary: Feature Selection
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Summary: Feature Selection

22



Summary: Feature Selection
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- Can add regularization in 
optimization objective

- Can be solved with Gradient 
Descent

- Can be applied to many 
models (e.g., linear or 
logistic regression)

- Can not be applied to all 
methods (e.g., kNN)



Summary: Feature Selection
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Outline

• Evaluating classifiers

– ROC curves, AUC metric

• Feature selection

– Wrapper

– Filter

– Embedded methods

• Decision trees

– Information gain

– ID3 algorithm
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Sample Dataset
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Categorical 
data



Decision Tree
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Decision Tree
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Decision Tree Learning
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Expressiveness
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XOR cannot be learned with linear classifiers



Occam’s Razor
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Learning Decision Trees
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Key Idea: Use Recursion Greedily

33



Second Level
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Full Tree
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Splitting
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Use entropy-based measure (Information Gain)



Transmitting Bits
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Use Fewer Bits
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Use Fewer Bits
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General case
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High/Low Entropy
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LowHigh

Which distribution has high entropy?



Conditional Entropy
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Conditional Entropy
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Conditional Entropy
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Conditional Entropy
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Information Gain
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Review

• Metrics for evaluating classifiers
– Accuracy, error, precision, recall, F1 score
– AUC (area under the ROC curve) measures performance of 

classifier for different thresholds

• Feature selection methods
– Filters decide on each feature individually
– Wrappers select a subset of features by search strategy 

(fixing model and evaluating with cross-validation)
– Embedded methods (e.g., regularization) are part of 

training

• Decision trees are interpretable, non-linear models
– Greedy algorithm to train Decision Trees
– Works on categorical and numerical data 
– Node splitting done by highest Information Gain
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