DS 4400

Machine Learning and Data Mining |

Alina Oprea
Associate Professor, CCIS
Northeastern University

September 27 2018



Logistics

HW1 due tomorrow, Friday, Oct 28, at 11:59pm

Midterm exam has been scheduled
— Oct 16 during class

Project proposal: due Oct 22

— 1 page description of problem you will solve, dataset, and ML
algorithms

— Individual project

— Project template and potential ideas will be shared soon
Project milestone: due Nov 13

— 2 page description on progress

Project report at the end of semester and project
presentations in class (10 minute per project)



Review

e Classification is a supervised learning problem

— Prediction is binary or multi-class
e (Classification techniques

— Linear classifiers (perceptron): compact, fast to
evaluate
e Canrunin online or batch mode

— Instance learners (KNN): need to store entire
training data, fast to evaluate

* Cross-validation should be used for parameter
selection and estimation of model error

— Improves model generalization



Supervised learning

Problem Setting

* Set of possible instances X

* Set of possible labels )V

* Unknown target function f: X — Y

* Set of function hypotheses H = {h | h: X — Y}

Input: Training examples of unknown target function f
{x(i),y(i)}, fori=1,..,n

Output: Hypothesis f € H that best approximates f

F(x®) ~ y®



Classification
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« Suppose we are given a training set of N observations discrete

(x®, . x™Yand {y®, ..,y xO ¢ Rd,

» Classification problem is to estimate f(x) from this data such that

f(x®) = y©®



Online Perceptron

Let 8 < [0,0,...,0]
Repeat:
Receive training example (¥, y(?))
if y(i)QTx(i) <0 // prediction is incorrect
0« 0+ yHgl

Online learning — the learning mode where the model update is
performed each time a single observation is received

Batch learning — the learning mode where the model update is
performed after observing the entire training set

9( 0T >0 — y—=+1
h(x) = sign(6Tx)
@ S Ol <0 — y=-—1

Linear classifier
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e Algorithm (to classify point x)
— Find k nearest points to x (according to distance metric)
— Perform majority voting to predict class of x
* Properties -
— Does not learn any model in training! —
— Instance learner (needs all data at testing time)



Outline

Evaluation of classification algorithms
— Metrics: accuracy, precision, recall

Cross validation
— K-fold CV or LOOCV

Logistic regression

— Maximum Likelihood Estimation (MLE) of model
parameters

Gradient descent for logistic regression
— Cross-entropy loss



Evaluation of classifiers

Given: labeled training data X,Y = { x® y®}"

* Assumes each x(O~ D(X)

X, Y
|

Train the model:

model € classifier.train(X, Y ) %J

X —

model

—> Yprediction

Apply the model to new data:

* Given: new unlabeled instance x ~ D(X)

Y prediction < model.predict(x)



Classification Metrics

# correct predictions

accuracy = :
# test instances

# incorrect predictions

error = 1 — accuracy = .
# test instances
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Confusion Matrix

Given a dataset of P positive instances and N negative instances:

Predicted Class
Yes No

I'P+1TN
P+ N

Yes accuracy =

No

Actual Class

Imagine using classifier to identify positive cases (i.e., for
information retrieval)

. 1P " TP
recision = recall = — —
I TP+ FP TP+ FN
Probability that classifier Probability that actual class is

predicts positive correctly predicted correctly
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Goals of classification

Produce models with high accuracy / low error

Generalize well

— Avoid overfitting (perform well on training set, but
poorly on testing data)

Find the simplest model that produces
reasonable accuracy

— Occam’s Razor

Reduce both bias and variance!



Overfitting

Y = high-order polynomial in X

Complex model

\l X

Y=aX +b + noise

The true model




How Overfitting Affects Prediction

Predictive

Error

Underfitting Overfitting

Error on Test Data

Error on Training Data

-

Model Complexity

ldeal Range
for Model Complexity

How can we avoid over-fitting without having
access to testing data?
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Cross Validation

Data: labeled instances, e.g. emails marked spam/ham
— Training set

-  Testset

run 2
run 3
run 4

Randomly split training set into training

and validation, e.g., 66% - 33%

Features: attribute-value pairs which characterize each x

Experimentation cycle

run 5

Validation
set

Tune

— Select a hypothesis f
(Tune hyperparameters on held-out or validation set)

- Estimate and reduce average error during multiple I

runs by randomly choosing validation set
Compute final error on testing set

params

Evaluation

— Accuracy: fraction of instances predicted correctly

Test
Data

- Use other metrics as appropriate (precision, recall)

* Avoids overfitting

Improves model generalization
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Cross-validation for kNN

As K increases:
+ Classification boundary becomes smoother
* Training error can increase

Choose (learn) K by cross-validation
« Split training data into training and validation
« Hold out validation data and measure error on this
K=1

K=3 Training data
K=7

k=1 [MIEl Validation crror | K=7 Train Validation Error
set 1 set 1 set 1 set 1
Train Validation Train Validation
Error Error
set 10 set 10 set 10 set 10

Avg Error 16

Error




Cross Validation

Training Data 15t Partition 2nd Partition kth Partition
Validation Training
I _ Set Data Training
Validation L Data
Training Set
R ) Data Training Validation
Data Set
Found that Found that Found that
e optimal P =p, optimal P =p, optimal P = py
= 1., o

Choose value of p of the model with the best validation performance

e k-fold CV

— Split data into k partitions of equal size
e Leave-one-out CV (LOOCV)

— k=n (validation set only one point)



Outline

* Evaluation of classification algorithms
— Metrics: accuracy, precision, recall

 Cross validation
— K-fold CV or LOOCV

* Logistic regression

— Maximum Likelihood Estimation (MLE) of model
parameters

* Gradient descent for logistic regression
— Cross-entropy loss




Classification based on Probability

* Instead of just predicting the class, give the probability
of the instance being that class

—i.e., learn p(y | x)

« Comparison to perceptron:

— Perceptron doesn’t produce probability estimate

* Recall that:
0 < p(event) <1

p(event) + p(—event) = 1
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shoun
in blue. Center: Boxplots of balance as a function of default status. Right:
Bozplots of income as a function of default status.



Why not linear regression?
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FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default wusing logistic regression. All probabilities lie
between 0 and 1.
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Logistic regression

* Takes a probabilistic approach to learning
discriminative functions (i.e., a classifier)

* hg(x) should give p(y = 1| «; @) | Can’tjustuse linear
regression with a
— Want 0 < fig(x) <1 threshold

* Logistic regression model:

}19(33) =g (GTCB) Logistic/Siﬁmoid Function
1 g(z)
9(2) = 1 +e=%

0.5 |
1
]’LG(CB) : 1 4 e_ng '/n | | |
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Interpretation of Model Output

he(x) = estimated p(y =1 | x;0)

Example: Cancer diagnosis from tumor size

T — iy L 1
| zy | | tumorSize

hg(il?) = 0.7
— Tell patient that 70% chance of tumor being malignant

Note that: p(y =0 | x;0)+ply=1]|x;0) =1

Therefore, p(y =0 | x;0)=1—ply=1| x;0)




LR is a Linear Classifier!

* Predicty =1 if:
Ply = 1|x; 6] > Ply = 0lx; 6]

Ply =1|x;0] > %
1 1

>_
1+e0'x" 2

e Equivalent to:

Logistic Regression is a linear classifier!
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Logistic Regression

el
heo(x) = g (0Tx) g9(2)
1
g(z) = — 0.5
L—6
0T should be large negative 0T should be large positive
values for negative instances values for positive instances

* Assume a threshold and...
— Predicty=1if hg(ax) > 0.5
— Predicty =01if hg(ax) < 0.5

Logistic Regression is a linear classifier!




Logistic Regression

. Given { (wmf ym) (w(m? y(2>) . (w(m, y(m) }

where z(9) ¢ ]R,d’, y(i) c{0,1}

* Model: hg(x) =g (0Tx)

1
9(4)—1+€_Z
8
0 — O a:T:[l U1 Bd]




Logistic Regression Objective

 Can’tjust use squared loss as in linear regression:

01 5 (0(s) -0



Maximum Likelihood Estimation (MLE)

Given training data X = {x), ..., x(™} with
labels Y = {yD), ..., y(W}

What is the likelihood of training data for parameter 67

Define likelihood function

Maxg L(0) = P[Y|X; 6]

Assumption: training points are independent

n
L) = | [Py©®;0)
=1

28



Log Likelihood

* Max likelihood is equivalent to maximizing log
of likelihood

n
L) = | | Py@1x®,0)
=1

n
logL(8) = 2 log P[y®|x®, 6]
i=1

* They both have the same maximum 6,;; g



MLE for Logistic Regression

p(ylx,0) = ho(x)¥(1 — he(x)) >

T
OnvLE = arg 11151:{ E log p(-_z,:("';'} | V. 9)

= arg max ; y(i)log he(x(i)) + (1 - y(i))log (1 — hg(X))

* Substitute in model, and take negative to yield

Logistic regression objective:

min J(0)

n

J(0) = — Z [y(i) log he () + ( — y(i)) log (1 — hg(az(i)))]

1=1




Objective for Logistic Regression

n

7(0) = =Y [y logho(2) + (1 = ) log (1 — ho (")

i=1
* Cost of a single instance:

| N —log(hg(x)) ify=1
cost (he(z),y) = { —log(1 — he(x)) ify=0

* Can re-write objective function as

T

J(0) = Z cost (hg(a:(’i))?y(’i))

=1
\ J
|

Cross-entropy loss
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Intuition

. N —log(hg(m)) ify=1
cost (hg(x),y) = { _log(1 — he(x)) ify=0

Aside: Recall the plot of log(z)

0.5 :

054




Intuition

| B —log(hg(x)) ify=1
cost (he(x),y) = { —log(1 — he(x)) ify=0

fy=1
* Cost =0 if prediction is correct

fy=1 * As hg(x) — 0, cost = oo

* Captures intuition that larger
cost mistakes should get larger
penalties

— e.g., predict hg(x) =0,buty=1
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Intuition

| B —log(hg(x)) ify=1
cost (he(z),y) = { —log(1 — he(x)) ify=0

Ify=0
* Cost =0 if prediction is correct

* As (1 —hg(x)) — 0,cost — o0

* Captures intuition that larger
mistakes should get larger
penalties

34



Gradient Descent for Logistic
Regression

T

J(0) = — Z {y{” log /2-9(:13[:'3}) + (1 — -y{”) log (1 — lz.g(m(j)m -

=1

Want 1119111 J(0)

* |nitialize @
* Repeat until convergence

0 simultaneous update
05 < 0; _aagj J(Q) forj=0..d




Regularized Logistic Regression

n

Jo) =-Y [y(?;) log he(z")) + (1 - y@')) log (1 - h,g(mm))]

=1

* We can regularize logistic regression exactly as before:
d
']reg;ula.rized(e) — ](9) + A Z 6’?
j=1
= J(0) + AM|6p1.ql5

L2 regularization
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Review

* Cross-validation should be used to avoid over-fitting
— K-fold or LOOCV

* Evaluating fit of a model using different metrics
— Accuracy, precision, recall

* Logistic regression
— Estimates Pr|Y = 1|X = x] using sigmoid

— Maximum Likelihood Estimation (MLE) for
objective

— Can use gradient descent for training
— Very interpretable
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