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Review

• Solution for simple and multiple linear regression 
can be computed in closed form
– Matrix inversion is computationally intense

• Gradient descent is an efficient algorithm for 
optimization and training LR
– The most widely used algorithm in ML!

– We derived GD update rule for simple and multiple LR

– There are many practical issues with GD

• Regularization is general method to reduce model 
complexity and avoid overfitting
– Add penalty to loss function

– Ridge and Lasso regression
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Simple LR

ෝ𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙

ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

Residual

𝜽𝟏 = 𝚫𝐲/𝚫𝐱

Slope

𝜃0 Intercept

MSE=
1

𝑛
σ𝑖=1
𝑛 ℎ𝜃 𝑥(𝑖) − 𝑦(𝑖)
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𝑥(𝑖), 𝑦(𝑖)



Simple LR – Closed Form

ҧ𝑥 =
σ𝑖=1
𝑛 𝑥(𝑖)

𝑛

ത𝑦 =
σ𝑖=1
𝑛 𝑦(𝑖)

𝑛
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• Dataset 𝑥(𝑖)∈ 𝑅, 𝑦(𝑖) ∈ 𝑅, ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

• 𝐽 𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖)
2

loss

𝜕𝐽 𝜃

𝜕𝜃0
= 
2

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖) = 0

𝜕𝐽(𝜃)

𝜕𝜃1
= 
2

𝑛
σ𝑖=1
𝑛 𝑥(𝑖) 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖) = 0

• Closed-from solution of min loss

– 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥

– 𝜃1 =
σ (𝑥 𝑖 − ҧ𝑥)(𝑦(𝑖) −ത𝑦)

σ 𝑥(𝑖)− ҧ𝑥
2



Multiple LR – Closed Form

• Dataset: 𝑥
(𝑖)

∈ 𝑅𝑑 , 𝑦
𝑖
∈ 𝑅

• Hypothesis ℎ𝜃 𝑥 = 𝜃𝑇𝑥

• MSE =
1

𝑛
σ𝑖=1
𝑛 𝜃𝑇𝑥(𝑖) − 𝑦(𝑖)

2
loss / cost
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Closed-from solution



GD for Simple Linear Regression

• 𝐽 𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖)
2

•
𝜕𝐽(𝜃)

𝜕𝜃0
=

2

𝑛
σ𝑖=1
𝑛 (𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖))

•
𝜕𝐽(𝜃)

𝜕𝜃1
=

2

𝑛
σ𝑖=1
𝑛 (𝜃0 + 𝜃1𝑥

𝑖 − 𝑦(𝑖)) 𝑥(𝑖)
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Update rules for Gradient Descent



GD for Multiple Linear Regression

1

𝑛

1

𝑛

2

𝑛

2

𝑛
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Update rules for Gradient Descent



Gradient Descent vs Closed Form

Gradient 
Descent

Closed form
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Outline

• Classification

– Linear classifiers

– Online perceptron and batch perceptron

• Instance learners

– kNN

• Evaluation of classification algorithms

– Metrics (accuracy, precision, recall)

• Cross validation
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Supervised learning
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{𝑥(𝑖), 𝑦(𝑖)}, for 𝑖 = 1,… , 𝑛

መ𝑓 𝑥(𝑖) ≈ 𝑦(𝑖)

መ𝑓
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Binary or 
discrete
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𝑥 1 , … , 𝑥 𝑛 and 𝑦 1 , … , 𝑦 𝑛 , 𝑥(𝑖) ∈ 𝑅𝑑 , 𝑦(𝑖) ∈ {−1, 1}

𝑓 𝑥(𝑖) = 𝑦(𝑖)



Example 1

Content-related features
• Use of certain words
• Word frequencies
• Language
• Sentence

Structural features
• Sender IP address
• IP blacklist
• DNS information
• Email server
• URL links (non-matching)

Classifying spam email

Binary classification: SPAM or HAM
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Example 2

Handwritten Digit Recognition

Multi-class classification
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Example 3
Image classification

Multi-class classification 15



Supervised Learning Process

Data
Pre-

processing
Feature 

extraction
Learning 

model

Training

Labeled
(Typically)

Classification
Regression

Testing

New 
data

Unlabeled

Learning 
model

Predictions

Malicious
Benign

Normalization
Standardization

Feature
Selection

Risk score

Classification Regression
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History of Perceptrons

17

They are the basic building blocks for 
Deep Neural Networks



Linear classifiers
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d+1

space into 2



Linear classifiers
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All the points x on the hyperplane satisfy: 𝜃𝑇𝑥 = 0



Example: Spam
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θ𝑥

෍

𝑖=0

𝑑

𝑥𝑖𝜃𝑖

σ𝑖 𝑥𝑖𝜃𝑖 > 0



The Perceptron
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1

2



The Perceptron
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1
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Geometric interpretation
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𝜽𝑡
𝜽𝑡+1



Online Perceptron
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T𝑦(𝑖)𝜃𝑇𝑥(𝑖)



Batch Perceptron

Guaranteed to find separating hyperplane if 
data is linearly separable

25

𝑦(𝑖)𝜃𝑇𝑥(𝑖)



Perceptron Limitations
• Is dependent on starting point

• It could take many steps for convergence

• Perceptron can overfit

– Move the decision boundary for every example
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Which of this is 
optimal?



Improving the Perceptron
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• For linearly separable data, can prove bounds on perceptron 
error (depends on how well separated the data is)
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• Properties
– (𝜃0, 𝜃1, … , 𝜃𝑑) = model parameters
– Perceptron is a special case with 𝑓 = 𝑠𝑖𝑔𝑛
– Linear regression can be used as classifier 𝑓(𝑥) = 𝑥

– If ℎ 𝑥 > 0.5, output 1; otherwise output -1
• Pros

– Very compact model (size d)
– Perceptron is fast

• Cons
– Does not work for data that is not linearly separable

ℎ𝜃 𝑥 = 𝑓(𝜃𝑇𝑥)

ℎ 𝑥 = 0

ℎ 𝑥 < 0 ℎ 𝑥 > 0
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Outline

• Classification

– Linear classifiers

– Online perceptron and batch perceptron

• Instance learners

– kNN

• Evaluation of classification algorithms

– Metrics (accuracy, precision, recall)

• Cross validation

30



31



K-Nearest-Neighbours for multi-class 
classification

Vote among multiple classes
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Vector norms: A norm of a vector ||x|| is informally a 
measure of the “length” of the vector.

– Common norms: L1, L2 (Euclidean)

Norm can be used as distance between vectors 𝑥 and 𝑦

• 𝑥 − 𝑦
𝑝

Vector distances
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Distance norms
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kNN
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• Algorithm (to classify point 𝑥)
– Find 𝑘 nearest points to 𝑥 (according to distance metric)
– Perform majority voting to predict class of 𝑥

• Properties
– Does not learn any model in training!
– Instance learner (needs all data at testing time)
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How to choose k (hyper-parameter)?

Overfitting!
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How to choose k (hyper-parameter)?
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How to choose k (hyper-parameter)?



Cross-validation

Training data

Train 
set 1

Validation 
set 1

Train 
set 10

Error

Validation 
set 10 Error

Avg Error

K=1
Train 
set 1

Validation 
set 1

Train 
set 10

Error

Validation 
set 10

Error

Avg Error

K=7

K=1
K=3
K=7

Error

… …
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Review
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• Classification is a supervised learning problem

– Prediction is binary or multi-class

• Examples

– Linear classifiers (perceptron)

– Instance learners (kNN)

• ML methodology includes cross-validation for 
parameter selection and estimation of model error

– K-fold CV or LOOCV
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