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Logistics

• HW 1 is on Piazza and Gradescope

• Deadline: Friday, Sept. 28, 2018

• Office hours

– Alina: Thu 4:30-6:00pm (ISEC 625)

– Anand: Tue 2-3pm (ISEC 605)

• How to submit HW

– Create a PDF and submit on Gradescope before 
11:59pm the day assignment is due

– Include link to code and ReadMe file

– Use Jupyter notebook in R or Python
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Collaboration policy

• What is allowed

– You can discuss the homework with your colleagues

– You can post questions on Piazza and come to office 
hours

– You can search for online resources to better 
understand class concepts

• What is not allowed

– Sharing your written answers with colleagues

– Sharing your code or receiving code from colleague

– Do not use code from the Internet! 
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Linear regression

Features

Response 
variables
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TV ads



Simple linear regression

ҧ𝑥 =
σ𝑖=1
𝑛 𝑥(𝑖)

𝑛

ത𝑦 =
σ𝑖=1
𝑛 𝑦(𝑖)

𝑛
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• Dataset 𝑥(𝑖)∈ 𝑅, 𝑦(𝑖) ∈ 𝑅, ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

• 𝐽 𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖)
2

loss

𝜕𝐽 𝜃

𝜕𝜃0
= 
2

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖) = 0

𝜕𝐽(𝜃)

𝜕𝜃1
= 
2

𝑛
σ𝑖=1
𝑛 𝑥(𝑖) 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖) = 0

• Solution of min loss

– 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥

– 𝜃1 =
σ (𝑥 𝑖 − ҧ𝑥)(𝑦(𝑖) −ത𝑦)

σ 𝑥(𝑖)− ҧ𝑥
2



Interpretation

ෝ𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙

ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

Residual

𝜽𝟏 = 𝚫𝐲/𝚫𝐱

Slope

𝜃0 Intercept

MSE=
1

𝑛
σ𝑖=1
𝑛 ℎ𝜃 𝑥(𝑖) − 𝑦(𝑖)

2
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𝑥(𝑖), 𝑦(𝑖)



Regression Learning 

Data
Pre-

processing
Feature 

extraction
Regression 

model

Training

Labeled

𝑥(𝑖), 𝑦(𝑖)
Train MSE

Testing

New 
data

Unlabeled
𝑥′

Regression 
model

Predictions

Normalization
Standardization

Feature 
Selection

Price
Risk score

Test MSE
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ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

ℎ𝜃 𝑥′ = 𝜃0 + 𝜃1𝑥′



Outline

• Multiple linear regression

– Derivation in matrix form 

• Practical issues

– Feature scaling and normalization

– Outliers

– Categorical variables

• Gradient descent

– Efficient algorithm for optimizing loss function

– Training LR with Gradient Descent
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Multiple Linear Regression

• Dataset: 𝑥
(𝑖)

∈ 𝑅𝑑 , 𝑦
(𝑖)

∈ 𝑅
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Use Vectorization
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Use Vectorization
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= 𝜃𝑇𝑥(𝑖)



Loss function

1

𝑛

1

𝑛

1

𝑛
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=
1

𝑛
X𝜃 − 𝑦

2

Euclidian Norm



Matrix and vector gradients

If 𝑦 = 𝑓 𝑥 , 𝑦 ∈ 𝑅𝑚, 𝑥 ∈ 𝑅𝑛

If 𝑦 = 𝑓 𝑥 , 𝑦 ∈ 𝑅 scalar , 𝑥 ∈ 𝑅𝑛 vector

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑥1

𝜕𝑦

𝜕𝑥2
…

𝜕𝑦

𝜕𝑥𝑛

Jacobian 
matrix
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Properties

• If w, x are 𝑑 × 1 vectors, 
𝜕𝑤𝑇𝑥

𝜕𝑥
= 𝑤

• If A: 𝑛 × 𝑑 𝑥: (𝑑 × 1),  
𝜕𝐴𝑥

𝜕𝑥
= 𝐴

• If A: 𝑑 × 𝑑 𝑥: (𝑑 × 1),  
𝜕𝑥𝑇𝐴𝑥

𝜕𝑥
= 𝐴 + 𝐴𝑇 𝑥

• If A symmetric:  
𝜕𝑥𝑇𝐴𝑥

𝜕𝑥
= 2𝐴𝑥

• If 𝑥: (𝑑 × 1),  
𝜕 𝑥

2

𝜕𝑥
= 2𝑥𝑇
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Min loss function

1

𝑛
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𝐽 𝜃 =
1

𝑛
X𝜃 − 𝑦

2

Using chain rule

𝑓 𝜃 = ℎ 𝑔 𝜃 ,
𝜕𝑓(𝜃)

𝜕𝜃
=
𝜕ℎ(𝑔(𝜃))

𝜕𝜃

𝜕𝑔(𝜃)

𝜕𝜃

ℎ 𝑥 = 𝑥
2
, 𝑔 𝜃 = 𝑋𝜃 − 𝑦

ℎ′ 𝑥 = 2𝑥𝑇 , 𝑔′ 𝜃 = 𝑋
𝜕𝐽(𝜃)

𝜕𝜃
=

2

𝑛
[ X 𝜃 − 𝑦 𝑇𝑋] = 0 ⇒ 𝑋𝑇 𝑋𝜃 − 𝑦 = 0



Closed-form solution
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𝐴𝐺𝐴 = 𝐴



Multiple Linear Regression

• Dataset: 𝑥
(𝑖)

∈ 𝑅𝑑 , 𝑦 𝑖 ∈ 𝑅

• Hypothesis ℎ𝜃 𝑥 = 𝜃𝑇𝑥

• MSE =
1

𝑛
σ𝑖=1
𝑛 𝜃𝑇𝑥(𝑖) − 𝑦(𝑖)

2
loss / cost
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Regression Learning 

Data
Pre-

processing
Feature 

extraction
Regression 

model

Training

Labeled
(Typically)

Train MSE

Testing

New 
data

Unlabeled

Regression 
model

Predictions

Normalization
Standardization

Feature 
Selection

Price
Risk score

Test MSE
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Feature Standardization
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Other feature normalization

• Re-scaling

– 𝑥𝑗
(𝑖)

←
𝑥𝑗
(𝑖)

−𝑚𝑖𝑛𝑗

𝑚𝑎𝑥𝑗 −𝑚𝑖𝑛𝑗
∈ [0,1]

–𝑚𝑖𝑛𝑗 and𝑚𝑎𝑥𝑗: minandmax value of feature j

• Mean normalization

– 𝑥𝑗
(𝑖)

←
𝑥𝑗
(𝑖)

−𝜇𝑗

𝑚𝑎𝑥𝑗 −𝑚𝑖𝑛𝑗

– Mean 0
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Outliers

• Dashed model is without outlier point
• Linear regression is not resilient to outliers!
• Outliers can be eliminated based on residual value

• Other techniques for outlier detection
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Categorical variables

• Predict credit card balance

– Age

– Income

– Number of cards

– Credit limit

– Credit rating

• Categorical variables

– Student (Yes/No) 

– State (50 different levels)
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Indicator Variables

• Binary (two-level) variable
– Add new feature 𝑥𝑗 = 1 if student and 0 otherwise

• Multi-level variable
– State: 50 values

– 𝑥𝑀𝐴 = 1 if State = MA and 0, otherwise

– 𝑥𝑁𝑌 = 1 if State = NY and 0, otherwise

– …

– How many indicator variables are needed?

• Disadvantages: data becomes too sparse for 
large number of levels
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Comparison with ANOVA

• ANOVA
– General statistical method for comparing populations
– Example 1: Is the income of MA and NY residents 

similar? 
– Example 2: Is there any difference between patients 

with certain treatment or no treatment?

• Linear regression
– Learning algorithm used for predicting responses on 

new data
– Example 1: Predict the income of US residents
– Example 2: Predict survival of patients
– Hypothesis testing for coefficient equal to zero is 

similar to ANOVA
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Outline

• Multiple linear regression

– Derivation in matrix form 

• Practical issues

– Feature scaling and normalization

– Outliers

– Categorical variables

• Gradient descent

– Efficient algorithm for optimizing loss function

– Training LR with Gradient Descent

25



What Strategy to Use?
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Follow the Slope
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Follow the direction of steepest descent!



How to optimize 𝐽(𝜃)? 
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How to optimize 𝐽(𝜃)? 

Different starting point
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Gradient Descent

30

Gradient = slope of line tangent 
to curve at the same point



Gradient Descent
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• What happens when 𝜃 reaches a local minimum?
• The slope is 0, and gradient descent converges!



Review

• Solution for multiple linear regression can be 
computed in closed form
– Matrix inversion is computationally intense

• Gradient descent is an efficient algorithm for 
optimization and training LR
– The most widely used algorithm in ML!

– Many variants (SGD, Coordinate descent, etc.)

– Converges if objective is convex

• In practice several techniques can help generate 
more robust models
– Outlier removal

– Feature scaling 
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