DS 4400

Machine Learning and Data Mining |

Alina Oprea
Associate Professor, CCIS
Northeastern University

September 18 2018



Logistics

HW 1 is on Piazza and Gradescope
Deadline: Friday, Sept. 28, 2018

Office hours
— Alina: Thu 4:30-6:00pm (ISEC 625)
— Anand: Tue 2-3pm (ISEC 605)

How to submit HW

— Create a PDF and submit on Gradescope before
11:59pm the day assignment is due

— Include link to code and ReadMe file
— Use Jupyter notebook in R or Python



Collaboration policy

e What is allowed

— You can discuss the homework with your colleagues

— You can post questions on Piazza and come to office
hours

— You can search for online resources to better
understand class concepts

* What is not allowed
— Sharing your written answers with colleagues
— Sharing your code or receiving code from colleague
— Do not use code from the Internet!



Linear regression

Given:
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Simple linear regression

 DatasetxWe R,y € R, hy(x) =0, + 6,
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Interpretation
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hg(x) =0, + 6,1x
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Regression Learning

Training
Pre- Feature Regression
processing extraction model
Labeled Normalization Feature Train MSE
x(l), y(l) Standardization Selection
hg(x) =0y + 6,x
Testing
New Regression ” Price
— Pred|Ct|0nS Risk score
data model
Test MSE

Unlabeled / ,
¥ hg(x) =6, + 0,x



Outline

 Multiple linear regression

— Derivation in matrix form

* Practical issues
— Feature scaling and normalization
— Qutliers
— Categorical variables

* Gradient descent
— Efficient algorithm for optimizing loss function
— Training LR with Gradient Descent



Multiple Linear Regression
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Use Vectorization

Benefits of vectorization

— More compact equations

— Faster code (using optimized matrix libraries)

Consider our model:

d
h(x) = Z 0,
j=0

Let

0 = CIZT:{l I Id}

Can write the model in vectorized form as h(x) = 0Tx
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Use Vectorization

 Consider our model for n instances:

d
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* Can write the model in vectorized form as hg(x) = X6



Loss function

* For the linear regression cost function:
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Matrix and vector gradients
If y = f(x),y € R scalar,x € R" vector

dy _ | dy Oy dy
dx | dx; 0x, T Oxy

Ify=f(x),y € R™,x € R"

- Oy Ouyr . Oyi
0x1q 0X9 0xXn
oy2 9dy2 . Oy2 -
Y | T oxs X Jacobian
Ox ; : : matrix
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Properties

If w,x are(d X 1) vectors,

IfA:(nXd) x:(dx1), an—A

If A: (d X d) x: (d X 1),

oxT Ax

If A symmetric: ™

f x: (d X 1), "“x”

owlx
ox - W
axTAx T
=(A+A")x
= 2Ax
= 2xT



Min loss function

— Notice that the solution is when d—(;](é?) =0

1 2
J(8) =~ |Ix6 —y|

Using chain rule
af (6 dh(g(6))adg(b
£6) = h(g(8)), f( ) _ (gg( )) ga(e)

h(x) = ||x|| ,9(9) = X0 —y
h'(x) = 2xT,9'(0) =

"’faf) 2[(X6-y)"X] =0 = X" (XH y) =0

Closed Form Solution: 0=(XTX) !XTy
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Closed-form solution

* Canobtain g by simply plugging X and yinto
0=(XTX)'XTy

[ 1 .1‘{1) ;rél} |

* If X" Xis not invertible (i.e., singular), may need to:

— Use pseudo-inverse instead of the inverse AGA = A

* In python, numpy.linalg.pinv(a)
— Remove redundant (not linearly independent) features

— Remove extra features to ensurethatd <n



Multiple Linear Regression

- Dataset: x” € R%,y € R
* Hypothesis hy(x) = 87 x

e MSE = = ?=1(8Tx(i) — y(i))z loss / cost

n

Y

0=(X"X)'XTy
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Regression Learning

Training
Data Pre- Feature Regression
processing extraction model
Lab.eled Normalization Feature Train MISE
(Typically) Standardization Selection
Testing
New Regression .
& e Predictions
data model
Unlabeled . Price
Risk score
Test MISE
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Feature Standardization

* Rescales features to have zero mean and unit variance

. 1 i
— Let u; be the mean of featurej: ;= ~ Z Tg )

i=1
— Replace each value with:
(?} I’Ez) - lf;, fOI’J - 1d
T, s ] (not x,!)

S j
)
* s; is the standard deviation of feature |

* Must apply the same transformation to instances for
both training and prediction

* Qutliers can cause problems
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Other feature normalization

* Re-scaling
(D) x§i) —minj
—X; 7 < — € [0,1]
] max; —min;

— min; and max;: min and max value of feature j

e Mean normalization

(1) .
5O XjTH)
] max;j — min;

— Mean O




Outliers

* Dashed model is without outlier point

* Linear regression is not resilient to outliers!

e Qutliers can be eliminated based on residual value
e Other techniques for outlier detection
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Categorical variables

* Predict credit card balance
— Age
— Income
— Number of cards
— Credit limit
— Credit rating
e Categorical variables
— Student (Yes/No)
— State (50 different levels)



Indicator Variables

* Binary (two-level) variable

— Add new feature x; = 1 if student and 0 otherwise
* Multi-level variable

— State: 50 values

— x4 = 1if State = MA and 0, otherwise

— xyy = 1 if State = NY and 0, otherwise

— How many indicator variables are needed?

* Disadvantages: data becomes too sparse for
large number of levels



Comparison with ANOVA

* ANOVA

— General statistical method for comparing populations

— Example 1: Is the income of MA and NY residents
similar?

— Example 2: Is there any difference between patients
with certain treatment or no treatment?

* Linear regression

— Learning algorithm used for predicting responses on
new data

— Example 1: Predict the income of US residents
— Example 2: Predict survival of patients

— Hypothesis testing for coefficient equal to zero is
similar to ANOVA



Outline

 Multiple linear regression

— Derivation in matrix form

* Practical issues
— Feature scaling and normalization
— Qutliers
— Categorical variables

* Gradient descent
— Efficient algorithm for optimizing loss function
— Training LR with Gradient Descent




What Strategy to Use?
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Follow the Slope

Follow the direction of steepest descent!
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How to optimize J(8)?

* Choose initial value for g

* Until we reach a minimum:

— Choose a new value for @ to reduce J(G)

J(Bﬁael)
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How to optimize J(8)?

* Choose initial value for @

* Until we reach a minimum:

— Choose a new value for @ to reduce J(Q)

J(80,01)

Different starting point
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Gradient Descent

* |nitialize @

* Repeat until convergence

A

0 simultaneous update
9j <—9j—(1’—J(9) . P
/ 893 forj=0...d
/
learning rate (small) )
e.g., o= 0.05 3 i
|
2 |
7(0) A,
i (X2,Y2) The Gradient "m" is: :
y B(2,6) !
: /? m= y,-y; =aY
/ Xz-X; BX 05 0 05 1 15 2 25
: / ., m= 6-2 7]
HA-‘ X 2="2
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to curve at the same point
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Gradient Descent

* |nitialize @

* Repeat until convergence

0 imult dat
9‘<—9—CE Jg S|m.u dnNeous update
! j/' 00 ; (6) forj=0..d
/
learning rate (small)
e.g., a=0.05 3

J(6) j A,

-05 0 05 1 15 2 25

6

 What happens when 60 reaches a local minimum?
 The slope is 0, and gradient descent converges!
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Review

e Solution for multiple linear regression can be
computed in closed form

— Matrix inversion is computationally intense
* Gradient descent is an efficient algorithm for
optimization and training LR
— The most widely used algorithm in ML!
— Many variants (SGD, Coordinate descent, etc.)
— Converges if objective is convex

* |n practice several techniques can help generate
more robust models
— QOutlier removal
— Feature scaling
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