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Logistics

* Final projects

— Presentations: Monday, Dec 3, 3-5:30pm in ISEC
655

— Report: Friday, Dec 7 in Gradescope
* No class on Dec 4
* Final Exam

— Office hours: Monday, Dec 10, 2-4pm
— Tuesday, Dec 11, 2-5pm in ISEC 655



Adversarial Machine Learning

Evaluation
Prediction
| Historical
data
e ] iodel
Data collection Training Testing

Real-time data

Studies attacks against machine learning systems

Designs robust machine learning algorithms that
resist sophisticated attacks

Many challenging open problems!



Attacks against supervised learning
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Evasion Attacks

Given O”gmal example X, f(X) =C [Szegedy et al. 13] Intriguing
Find adversarial example x’ properties of neural networks

. 2
m1n||x — X ||2
Suchthat f(x') =t

x' isin range

Equivalent formulation

min c||81|] + £.(x + &)

x'=x+96
£.(x") is loss function on x’




Poisoning Availability Attacks

Testing Data

Plane

Data
>
Labels
ML Algorithm _
Attacker Objective: Bird

— Corrupt the predictions by the ML model significantly

— Predictions on most points are impacted in testing
Attacker Capability:

— Insert fraction of poisoning points in training
[M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li.
Manipulating Machine Learning: Poisoning Attacks and
Countermeasures for Regression Learning. In [EEE S&P 2018]



Optimization Formulation

Given a training set D find a set of poisoning data points D

p

that maximizes the adversary objective A on validation set D,,;

where corrupted model 8,, is learned by
minimizing the loss function L on D U D,

[

\_

argmax A(Dyq;,05) s.t.
Dy

0, € argminL(D U D,, 0)
0

\

J

Optimization formulation in white-box setting
— Attacker knows training data D
— Attacker knows ML model and loss function L

Implicit
dependence



Gradient Ascent Algorithm

* Input: poisoned point x,, label y,
— Adversarial objective A
* Output: poisoned point x, label y
1. Initialize poisoned point x < xq; y < VY,
2. Repeat
— Store previous iteration X, < X; Yy < Y

— Update in direction of gradients choosing a with line
search and project to feasible space
x < Il(x+ aV, A(x,y))

y < Iy + aVy,A(x,y))
3. Until |[A(x,y) — A(xpr, ypr)‘ <E€
4. Return x,y
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DEEP LEARNING EVERYWHERE
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INTERNET & CLOUD MEDICINE & BIOLOGY MEDIA & ENTERTAINMENT SECURITY & DEFENSE AUTONOMOUS MACHINES

Image Classification Cancer Cell Detection Video Captioning Face Detection Pedestrian Detection
Speech Recognition Diabetic Grading Video Search Video Surveillance Lane Tracking

Language Translation Drug Discovery Real Time Translation Satellite Imagery Recognize Traffic Sign
Language Processing

Sentiment Analysis

Recommendation

e Most ML models are vulnerable in face of attacks!

— Evasion (testing-time) attacks
— Poisoning (training-time) attacks
— Privacy attacks

e How to make ML more robust to attacks?



Adversarial Training

Algorithm 1 Adversarial training of network N.
Size of the training minibatch is m. Number of adversarial images in the minibatch is &.

1: Randomly initialize network N

2: repeat

3: Read minibatch B = {X*',... .. "} from training set

4: Generate k adversarial examples { X!, ....,. X%} from corresponding
clean examples { X!, ..., X"} using current state of the network N

5: Make new minibatch B’ = {X!, ..., XE  XBL o ya e

6: Do one training step of network N using minibatch B’

7: until training converged

* |. Goodfellow et al. Explaining and harnessing adversarial
examples, ICLR 2015.

* A. Kurakin et al. Adversarial Machine Learning at Scale,
ICLR 2017.



Is Adv Training Effective?
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Resilient Linear Regression

e Goal

— Train a robust linear regression model, assuming a - n
poisoned points among N points in training

— MSE should be close to original MSE

— No ground truth on data distribution available
* Existing techniques

— Robust statistics

 Huber [Huber 1964], RANSAC [Fischler and Bolles 1961]
* Resilient against outliers and random noise

— Adversarial resilient regression: [Chen et al. 13]

* Make simplifying assumption on data distribution (e.g.,
Gaussian)



Our Defense: TRIM

Given dataset on n points and 20

an attack points, find best

model on n of (1 + a)n points

If w, b are known, find points
with smallest residual

But w, b and true data
distribution are unknown!

Before TRIM lteration 1

0_

_20 -

>

20 4

04

—20

(1

argmin L(w, b, 1) =
w,b,l

N =1+ a)n,

\_

RIM: alternately estimate model and find low residual points

1
1 DU ) =y + 29(w)

L€l

Ic[l,..,Nl, |l=n
[ L, y
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Trimmed optimization

Estimate model parameters and identify
points with minimum residual alternatively

— Alternating optimization

Select I arandom subsetin {1,...,N} |I| =n
— Assume poisoning rate (or upper bound) is known
Repeat

— Estimate (w, b) = argmin L(w, b, )

— Select new set I of points, |I| = n, with lowest
residuals under new model

Until convergence (loss does not decrease)
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Defense results

e TRIM MSE is within 1% of the original model MSE
* Significant improvement over existing methods

1.6 - " ]
14l —&— No Defense n
' TRIM
121 _¢— RONI Existing
1.0{ —&— Huber L methods
W qg| —+ RANSAC
m -
S
0.6
— 4
0.4 1 ¢ B No defense
Better 0.24
defense 0.0 Our defense

0.00 0.04 0.08 0.12 0.16 0.20
Poisoning Rate

Predict house price with LASSO regression
(i.e., with L1 regularization)
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Review



Machine learning is everywhere

amazoncom
~—

Recommended for You

LOOK INSIBE!
-

Semantics, Second Edition (Modern

Linguistics

. II,: SI,(t?)tcekKerns (MBY 15 2011) Rate this item
List Price: $40.00 [ER=gasagsnd
Price: $37.31 [J1ownit

68 used & new from $14.00 [ Mot interested

(_Add to Cart ) [ Add to Wish List |

Google

Translate

English Spanish

From: English - detected ~ 4'.’ To: Chinese (Simplified) ~

Fronch  English - detected Chinese (Simplified) English  Spanish

The blue fox jumps over the hedge x Emﬁﬂﬁﬁ'

o

Lén hi kuayué duichéng

you p d

Meaning: A Slim Guide to Semantics (Oxford [ reedrdrde
Linguistics) (Paperback)

[_] This was a gift
by Paul Elbourne (Author)

[_] Don't use for
recommendations

Patients

~ Biomarker
“%1@ Diagnostics

17



DS-4400 Course objectives

Become familiar with machine learning tasks
— Supervised learning vs unsupervised learning
— Classification vs Regression vs Clustering

Study most well-known algorithms and
understand to which problem they apply

— Regression (linear regression)
— Classification (SVM, decision trees, neural networks)
— Clustering (k-means)

Learn to apply ML algorithms to real datasets
— Using existing packages in R and Python

Learn about security challenges of ML
— Introduction to adversarial ML

http://www.ccs.neu.edu/home/alina/classes/Fall2018/

18


http://www.ccs.neu.edu/home/alina/classes/Fall2018/

What we covered

Adversarial ML

Ensembles Deep learning :
: Unsupervised
* Bagging * Feed-forward Neural Nets
: e PCA
* Random forests e Convolutional Neural Nets
: e Auto-encoders
* Boosting * Recurrent Neural Nets e Clusterin
 AdaBoost * Back-propagation 8
Linear classification Noz\lllsear classification ||, Metrics
PerFeptron _ St * Cross-validation
Logistic regression Keus?g\;cl:/(laes . Regularization
LPA etne * Feature selection
Linear SVM Naive Bayes . Gradient Descent
* Density Estimation
Linear Regression

Linear algebra

Probability and statistics




Terminology

Hypothesis space H = {f: X — Y}
Trainingdata D = (x;,y;) E X XY
Features: x; € X

Labelsy; €Y

— Classification: discrete y; € {-1,1}

— Regression: y; € R

Loss function: L(f, D)

— Measures how well f fits training data

Training algorithm: Find hypothesis f:X - Y

— f = argrjpellgl L(f,D)

20



Linear Regression

\

. ININGING
6, Intercept

A

o i

E Residual
> vertical offset
3

o

o

v

-

x (explanatory variable)

hg(x) =0, + 6,1x
MSE= — 37, (hg (x®) — y @)

21



Gradient Descent

* |nitialize @

* Repeat until convergence

J imult dat
9<_9—Of JG 5|m}1 dneous update
/ 3/ 00 (6) forj=0...d
e
learning rate (small)
e.g.,a=0.05 3

J(6) i A,

05 0 05 1 15 2 25
v

Gradient = slope of line tangent
to curve at the same point

22



Linear classifiers

* Linear classifiers: represent decision boundary by hyperplane

B 90 ] @ o o
0, ‘
0 = ' r! = [ 1 I .. Xy } @ .
) @ @
i Qd |
] >
h(x) = sign(8Tz) where sign(z) = { —1 i j < 8

—Notethat: 8Tz >0 — y = +1
Ol <0 —= y=-—1

All the points x on the hyperplane satisfy: 87x = 0



Online Perceptron

Let 8 < [0,0,...,0]
Repeat:
Receive training example (x(?), (1))
if y®aTx® <0 // prediction is incorrect
0« 0+ y gl

Online learning — the learning mode where the model update is
performed each time a single observation is received

Batch learning — the learning mode where the model update is
performed after observing the entire training set




Logistic Regression

1 =
heo(x) = g (0Tx) g9(2)
1
g(z) = — 0.5
L—6
0T should be large negative 0T should be large positive
values for negative instances values for positive instances

* Assume a threshold and...
— Predicty=1if hg(ax) > 0.5
— Predicty =01if hg(ax) < 0.5

Logistic Regression is a linear classifier!




LDA

Given training data (x(‘),y(‘)) i=1..nyYe

(1,.. K}

1. Estimate mean
and variance

2. Estimate prior

. = — (1)
e = - ~ >«

iyi=k
~2 D _n \2
o = .n__}{Z_Z(x i)
k=1 iy;=k
T = ng/n.

Given testing point x, predict k that maximizes:

Op(x) =x -

~ )
J“"Ih M | 3
J‘j-' 2&2 | ng{:“k}
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SVM - Max Margin

Support vectors are “closest” to hyperplane
If support vectors change, classifier changes

27



SVM with Kernels

FIGURE 9.9. Left: An SVM unth a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulling in a far more appropriate decision
rule. Right: An SVM unth a radial kernel is applied. In this ezample, either kernel
is capable of capturing the decision boundary.

28



Kernels

Linear kernels

— K(a,b) =< a,b >=);a;b;
Polynomial kernel of degree m
— K(a, b) == (1 + Z?:O Cll'bi )m

Radial Basis Function (RBF) kernel (or
Gaussian)

—K(a,b) = exp(—y Xi=o(a;—b;)?)
Support vector machine classifier
—h(z) = 6p + Nes @K (2, x)

29



K Nearest Neighbour (K-NN) Classifier

Algorithm

« For each test point, x, to be classified, find the K nearest
samples in the training data

« Classify the point, x, according to the majority vote of their

class labels
ﬂ?j‘
eg.K=3
A ‘A .
A
| A ‘h
« applicable to ‘ ®
multi-class case A ’ -
‘ ‘ [ ] L
L ’ @ ®
[ ] ] '




Learning Decision Trees

 Start from empty decision tree

* Split on next best attribute (feature)

— Use, for example, information gain to select
attribute:
argmax IG(X;) =argmax H(Y) — H(Y | X;)
[ (!

* Recurse

ID3 algorithm uses Information Gain
Information Gain reduces uncertainty on Y

31



Ensembles

Original
D Training data

1

Step 1:
Create Multiple D, D, B D,
Data Sets
Step 2:
Build Multiple /e \ ol /oo .
Classifiers ' N A2 youw N

| S

\
-
\‘.
\\
-
hl O
/"
(f/
-
-

Step 3. N
Combine ' ol
Classifiers

Majority Votes

32



Random Forests

* Construct decision trees on bootstrap replicas

— Restrict the node decisions to a small subset of features
picked randomly for each node

* Do not prune the trees

— Estimate tree performance X

on out-of-bootstrap data /z \
* Average the output jj \g::\. :j \gc:\ ﬁ }“?:
\ / \

of all trees (or

choose mode decision) ,!\{/

f

|
5\

+
Trees are de-correlated by choice of t
random subset of features

-

33



AdaBoost

1: Initialize a vector of n uniform weights wy

2. fort=1,....T
3: Train model h; on X,y with weights wy
4: ‘ompute the weighted training error of h;

5% Choose 3 = % In (%)
t
Update all instance weights:
wig1i = wiir exp(—Bey P he(xD))

7 Normalize w11 to be a distribution

8: end for
9: Return the hypothesis

T
H(x) = sign (Zb’tht(x))
t=1

* Final model is a weighted combination of members

— Each member weighted by its importance

34



Naive Bayes Classifier

Idea: Use the training data to estimate
P(X|Y) and P(Y) .
Then, use Bayes rule to infer P(Y|X,w) for new data

Easy to estimate
from data Impractical, but necessary

PIY = k[P[X, = x; A~ AXy= x4]V = K]
P[X1 = X1 N /\Xd: xd]

PIY =k|X=x] =

Unnecessary, as it turns out

* Recall that estimating the joint probability distribution
P(X1,Xo,....X4|Y) isnot practical



Confusion Matrix

* Given a dataset of P positive instances and N negative instances:

Predicted Class
Yes No

I'P+1TN
P+ N

Yes accuracy =

No

Actual Class

* Imagine using classifier to identify positive cases (i.e., for
information retrieval)

. 1P " TP
recision = recall = — —
I TP+ FP TP+ FN
Probability that classifier Probability that actual class is

predicts positive correctly predicted correctly

36



Perfect
classification

o
—-

o
o

0.6

True positive rate
0.4

0.2

0.0

* Receiver Operating Characteristic (ROC)

ROC Curves

ROC Curve

One classifier for

Be

fixed threshold

;ter\

. Random
" guessing

.'l
0.0

0.2

I | |
0.4 0.6 0.8

False positive rate

1.0

* Determine operating point (e.g., by fixing false positive rate)

37



Cross Validation

Data: labeled instances, e.g. emails marked spam/ham
— Training set

-  Testset

run 2
run 3
run 4

Randomly split training set into training

and validation, e.g., 66% - 33%

Features: attribute-value pairs which characterize each x

Experimentation cycle

run 5

Validation
set

Tune

— Select a hypothesis f
(Tune hyperparameters on held-out or validation set)

- Estimate and reduce average error during multiple I

runs by randomly choosing validation set
Compute final error on testing set

params

Evaluation

— Accuracy: fraction of instances predicted correctly

Test
Data

- Use other metrics as appropriate (precision, recall)

* Avoids overfitting

Improves model generalization

38



Bias-Variance Tradeoff

A 2 ! e
. s Total E Over-fittin
Under-fitting 3 T 5
S
L -
8 :
T
S |
e E .
o g ; Variance
v :
Biasz
- _ =
< >

Model Complexity

* Bias = Difference between estimated and true models
* Variance = Model difference on different training sets

39



Regularization

* A method for controlling the complexity of
learned hypothesis

1

J(6) = % (h_g (mm) _ y(f))‘i "‘% i:ﬂf Ridge
j=1

=1

\ ] | J
1 |

model fit to data regularization
n d
. )
J©) = ) (he(x®) = y®)* +2> |6y LASSO
i=1 =1
L Y J L r )
Squared Regularization

Residuals



Methods for Feature Selection

* Wrappers

— Select subset of features that gives best prediction
accuracy (using cross-validation)

— Model-specific
* Filters

— Compute some statistical metrics (correlation
coefficient, mutual information)

— Select features with statistics higher than threshold

* Embedded methods

— Feature selection done as part of training
— Example: Regularization (Lasso, L1 regularization)



Neural Network Architectures

Feed-Forward Networks

* Neurons from each layer
connect to neurons from
next layer

Deep Feed Forward (DFF)

Convolutional Networks

* Includes convolution layer
for feature reduction

* Learns hierarchical
representations

Il O A@‘mf
PP O AV
“Nap O ~ M%.g‘?
N NG V’%”'&

Recurrent Networks

* Keep hidden state

* Have cycles in
computational graph

0NN

W Sesid

(| ‘\II\",

42



Feed-Forward Neural Network

Training example
X = (x1'x2'x3)

(Input Layer) (Hidden Layer) (Output Layer)

Layer O Layer 1 Layer 2

No cycles 6 = (b1, will pl2] iz

43



Multi-class classification

—> Ply=0| x)
—> Ply=1] x)

—> Ply=2x)

Softmax

44



Softmax classifier

> —> =0
2.0 0.7 "
P
X B ' - —p> p(y=1) Y
1.0 0.2
> —P py=2)
0 I | 0.1
Scores (Logits) Probabilities
e’
o(z); = = forj=1, ..., K.
D k1 €%

* Predict the class with highest probability
* Generalization of sigmoid/logistic regression to multi-class

45



Convolutional Nets

RELU RELU
CONV CONV

7 |
—
L
o
|
=
L
o

RELU RELU

CONV CONV

CONV CONV

N w £g 2
-..-I-.-n-.
........-.
AR
...I..-.-.
add AASENEAD
HAAREOOEHNEN
= =L DL Bvis T
— [ PR W TR N
——=[0 1] 1] P
(1Y 0 01 N 4 ) 6 QO
UEERINENAN
o S R N A
— (AR NN \ TR
—[OMVE' ] T PR
.|VPV—- MEEE'EH%;%@ﬂyw

5
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RNN Architectures

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

! t ot ot f . t ot ot

i 1 Pt Pt tt ot

\ e.g. Machine Translation
seq of words -> seq of words

47



Training NN with Backpropagation

Given training set (x1, V1), ..., (Xn, V)
Initialize all parameters W] bl*I randomly, for all layers ¢
Loop

Set A{) =0 VI,i,

For each training instance (x®,y®)
Set all) = x;
Compute {al?), ..., a)} via forward propagation ~ EPQCH
Compute 6% = all) — y®

Compute errors {1, 32} | |
Compute gradients A,E? = Af? + a..g”dg_l—”
Update weights via gradient step
€ _ e A
o — oyt
Wi =wl - o

L£]
Lj
Until weights converge or maximum number of epochs is reached

e Similarfor b



Mini-batch Gradient Descent

* |nitialization
— For all layers ¢
e Set Wl plt] at random
* Backpropagation
— Fix learning rate a

— For all layers € (starting backwards)
* For all batches b of size B with training examples x(ib),y(ib)

— Wl = —q¥B Loy
owl?]
—plfl = pl&l — g 3B LD,y

dpl?]



PCA

e We can apply these formulas to get the new
representation for each instance x

— p— . —

01011001... 0.34 = 0.23
11011100... 0.04 = 0.13
v [00111000... |x; @: —0.64 = 0.93
1 10101000... | - —0.20 —-0.83

* The new 2D representation for x; is given by:
T3y = 0.34(0) + 0.04(0) - 0.64(1) + ...
%, = 0.23(0) + 0.13(0) + 0.93(1) + ...
* The re-projected data matrix is given by X = X(t)



Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed 7
input data
T Decoder
Features z
T Encoder
i

Input data




K means Algorithm

@ Initialization

e Data are xq.p
e Choose initial cluster means mq., (same dimension as data).

® Repeat
@ Assign each data point to its closest mean

Z, = ar min  d(x,.m;
! g:’E{l?...?k} (Xn, m;)

® Compute each cluster mean to be the coordinate-wise average
over data points assigned to that cluster,

mk:Ni Z Xn

k {n:z,=k}

©® Until assignments z;.)y do not change
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Agglomerative clustering

* Algorithm:

— Place each data point into its own singleton group
(cluster)

— Repeat
* |teratively merge the two closest groups/clusters
— Until: stopping condition is satisfied

* Qutput
— Set of clusters
— Dendrogram (tree of how data was merged)

* Need to define distance or similarity between
groups






