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Logistics

• Final projects

– Presentations: Monday, Dec 3, 3-5:30pm in ISEC 
655

– Report: Friday, Dec 7 in Gradescope

• No class on Dec 4

• Final Exam

– Office hours: Monday, Dec 10, 2-4pm

– Tuesday, Dec 11, 2-5pm in ISEC 655
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Adversarial Machine Learning

• Studies attacks against machine learning systems 
• Designs robust machine learning algorithms that 

resist sophisticated attacks
• Many challenging open problems! 

TestingData collection

Historical 
data

Training

Model

Real-time data

Evaluation

Prediction

3



Attacks against supervised learning
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Evasion Attacks

Given original example x, f(x) =c
Find adversarial example x’

min 𝑥 − 𝑥′
2

2

Such that 𝑓 𝑥′ = 𝑡
𝑥′ is in range

min 𝑐 𝛿
2

2
+ ℓ𝑡(𝑥 + 𝛿)

𝑥′ = 𝑥 + 𝛿
ℓ𝑡 𝑥

′ is loss function on 𝑥′

Equivalent formulation

[Szegedy et al. 13] Intriguing 
properties of neural networks
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Poisoning Availability Attacks
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• Attacker Objective:
– Corrupt the predictions by the ML model significantly
– Predictions on most points are impacted in testing

• Attacker Capability: 
– Insert fraction of poisoning points in training

• [M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. 
Manipulating Machine Learning: Poisoning Attacks and 
Countermeasures for Regression Learning. In IEEE S&P 2018] 6



Optimization Formulation

argmax
𝐷𝑝

𝐴(𝐷𝑣𝑎𝑙, 𝜽𝑝) 𝑠. 𝑡.

𝜽𝑝 ∈ argmin
𝜽

𝐿(𝐷 ∪ 𝐷𝑝, 𝜽)

Given a training set 𝐷 find a set of poisoning data points 𝐷𝑝

that maximizes the adversary objective 𝐴 on validation set 𝐷𝑣𝑎𝑙

where corrupted model 𝜽𝑝 is learned by 

minimizing the loss function 𝐿 on 𝐷 ∪ 𝐷𝑝
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Optimization formulation in white-box setting
– Attacker knows training data D
– Attacker knows ML model and loss function 𝐿

Implicit 
dependence



Gradient Ascent Algorithm
• Input: poisoned point 𝑥0, label 𝑦0

– Adversarial objective 𝐴

• Output: poisoned point 𝑥, label 𝑦

1. Initialize poisoned point 𝑥 ← 𝑥0; 𝑦 ← 𝑦0
2. Repeat

– Store previous iteration 𝑥𝑝𝑟 ← 𝑥; 𝑦𝑝𝑟 ← 𝑦

– Update in direction of gradients choosing 𝛼 with line 
search and project to feasible space

𝑥 ← Π(x + 𝛼∇𝑥𝐴(𝑥, 𝑦))
y ← Π(y + 𝛼∇𝑦𝐴(𝑥, 𝑦))

3. Until 𝐴 𝑥, 𝑦 − 𝐴 𝑥𝑝𝑟, 𝑦𝑝𝑟 < 𝜖

4. Return 𝑥, y
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Defenses

• Most ML models are vulnerable in face of attacks!
– Evasion (testing-time) attacks 
– Poisoning (training-time) attacks
– Privacy attacks

• How to make ML more robust to attacks?



Adversarial Training

• I. Goodfellow et al. Explaining and harnessing adversarial 
examples, ICLR 2015.

• A. Kurakin et al. Adversarial Machine Learning at Scale, 
ICLR 2017.



Is Adv Training Effective?



Resilient Linear Regression

• Goal
– Train a robust linear regression model, assuming 𝛼 ⋅ 𝑛

poisoned points among N points in training

– MSE should be close to original MSE

– No ground truth on data distribution available

• Existing techniques 
– Robust statistics

• Huber [Huber 1964], RANSAC [Fischler and Bolles 1961]

• Resilient against outliers and random noise

– Adversarial resilient regression: [Chen et al. 13]
• Make simplifying assumption on data distribution (e.g., 

Gaussian)
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Our Defense: TRIM

• Given dataset on n points and 
𝛼𝑛 attack points,  find best 
model on 𝑛 of 1 + 𝛼 𝑛 points

• If 𝒘,𝑏 are known, find points 
with smallest residual

• But 𝒘, 𝑏 and true data 
distribution are unknown!

argmin
𝑤,𝑏,𝐼

𝐿 𝑤, 𝑏, 𝐼 =
1

|𝐼|
෍

𝑖∈𝐼

𝑓 𝒙𝑖 − 𝑦𝑖
2 + 𝜆Ω(𝒘)

𝑁 = 1 + 𝛼 𝑛, 𝐼 ⊂ 1,… , 𝑁 , 𝐼 = 𝑛

TRIM: alternately estimate model and find low residual points
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Trimmed optimization

• Estimate model parameters and identify 
points with minimum residual alternatively
– Alternating optimization

• Select 𝐼 a random subset in 1,… , 𝑁 , 𝐼 = 𝑛
– Assume poisoning rate (or upper bound) is known

• Repeat
– Estimate (𝑤, 𝑏) = argmin 𝐿 𝑤, 𝑏, 𝐼

– Select new set 𝐼 of points, 𝐼 = 𝑛, with lowest 
residuals under new model 

• Until convergence (loss does not decrease)
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Defense results
• TRIM MSE is within 1% of the original model MSE

• Significant improvement over existing methods

Our defense

Existing 
methods

No defense

Predict house price with LASSO regression
(i.e., with L1 regularization) 15

Better 
defense



Review



Machine learning is everywhere
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DS-4400 Course objectives

• Become familiar with machine learning tasks
– Supervised learning vs unsupervised learning
– Classification vs Regression vs Clustering 

• Study most well-known algorithms and 
understand to which problem they apply
– Regression (linear regression)
– Classification  (SVM, decision trees, neural networks)
– Clustering (k-means )

• Learn to apply ML algorithms to real datasets
– Using existing packages in R and Python

• Learn about security challenges of ML
– Introduction to adversarial ML

18
http://www.ccs.neu.edu/home/alina/classes/Fall2018/

http://www.ccs.neu.edu/home/alina/classes/Fall2018/


What we covered
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Linear classification
• Perceptron
• Logistic regression
• LDA
• Linear SVM

• Metrics
• Cross-validation
• Regularization
• Feature selection
• Gradient Descent
• Density Estimation

Linear Regression

Non-linear classification
• kNN
• Decision trees
• Kernel SVM
• Naïve Bayes

Linear algebra Probability and statistics

Adversarial ML

Deep learning
• Feed-forward Neural Nets
• Convolutional Neural Nets
• Recurrent Neural Nets
• Back-propagation

Ensembles
• Bagging
• Random forests
• Boosting
• AdaBoost

Unsupervised
• PCA
• Auto-encoders
• Clustering



Terminology
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• Hypothesis space 𝐻 = 𝑓: 𝑋 → 𝑌

• Training data D = 𝑥i, 𝑦i ∈ 𝑋 × 𝑌

• Features: 𝑥𝑖 ∈ 𝑋

• Labels 𝑦i ∈ 𝑌

– Classification: discrete 𝑦i ∈ {-1,1}

– Regression: 𝑦i ∈ R

• Loss function: 𝐿 𝑓, 𝐷

– Measures how well 𝑓 fits training data

• Training algorithm: Find hypothesis መ𝑓: 𝑋 → 𝑌

– መ𝑓 = argmin
𝑓∈𝐻

𝐿 𝑓, 𝐷

•



Linear Regression

ෝ𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙

ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

Residual

𝜽𝟏 = 𝚫𝐲/𝚫𝐱

Slope

𝜃0 Intercept

MSE=
1

𝑛
σ𝑖=1
𝑛 ℎ𝜃 𝑥(𝑖) − 𝑦(𝑖)

2
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𝑥(𝑖), 𝑦(𝑖)



Gradient Descent
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Gradient = slope of line tangent 
to curve at the same point



Linear classifiers
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All the points x on the hyperplane satisfy: 𝜃𝑇𝑥 = 0



Online Perceptron
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T𝑦(𝑖)𝜃𝑇𝑥(𝑖)



Logistic Regression 
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Logistic Regression is a linear classifier!



LDA 
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Given training data 𝑥(𝑖), 𝑦(𝑖) , 𝑖 = 1, … , 𝑛, 𝑦(𝑖) ∈

{1, … , 𝐾}

1. Estimate mean 
and variance

2. Estimate prior

Given testing point 𝑥, predict k that maximizes:

𝑥(𝑖)

(𝑥(𝑖)− Ƹ𝜇𝑘)2



SVM - Max Margin
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• Support vectors are “closest” to hyperplane
• If support vectors change, classifier changes



SVM with Kernels
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Kernels

• Linear kernels

– 𝐾 𝑎, 𝑏 =< 𝑎, 𝑏 > = σ𝑖 𝑎𝑖𝑏𝑖

• Polynomial kernel of degree m

– 𝐾 𝑎, 𝑏 = 1 + σ𝑖=0
𝑑 𝑎𝑖𝑏𝑖

𝑚

• Radial Basis Function (RBF) kernel (or 
Gaussian)

– 𝐾 𝑎, 𝑏 = exp −𝛾σ𝑖=0
𝑑 (𝑎𝑖−𝑏𝑖)

2

• Support vector machine classifier

– h 𝑧 = 𝜃0 +σ𝑖∈𝑆𝛼𝑖𝐾(𝑧, 𝑥
(𝑖))
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Learning Decision Trees
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ID3 algorithm uses Information Gain
Information Gain reduces uncertainty on Y



Ensembles

32Majority Votes



Random Forests
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Trees are de-correlated by choice of 
random subset of features



AdaBoost
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exp(−𝛽𝑡𝑦
𝑖 ℎ𝑡(𝑥

𝑖 ))



Naïve Bayes Classifier
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P[𝑌 = 𝑘]P 𝑋1 = 𝑥1 ∧⋯∧ 𝑋𝑑= 𝑥𝑑 𝑌 = 𝑘

P[𝑋1 = 𝑥1 ∧⋯∧ 𝑋𝑑= 𝑥𝑑]
P 𝑌 = 𝑘 𝑋 = 𝑥



Confusion Matrix
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ROC Curves
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• Receiver Operating Characteristic (ROC)
• Determine operating point (e.g., by fixing false positive rate)

Perfect 
classification

Random 
guessing

Better

One classifier for 
fixed threshold



Cross Validation
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- Use other metrics as appropriate (precision, recall)

- Estimate and reduce average error during multiple 
runs by randomly choosing validation set

- Compute final error on testing set

Tune 
params

• Improves model generalization
• Avoids overfitting

- Test set

- Randomly split training set into training 
and validation, e.g., 66% - 33%

Validation 
set



Bias-Variance Tradeoff

39

• Bias = Difference between estimated and true models
• Variance = Model difference on different training sets

Over-fitting
Under-fitting



Regularization

• A method for controlling the complexity of 
learned hypothesis

Ridge

LASSO



Methods for Feature Selection

• Wrappers
– Select subset of features that gives best prediction 

accuracy (using cross-validation)

– Model-specific

• Filters
– Compute some statistical metrics (correlation 

coefficient, mutual information)

– Select features with statistics higher than threshold

• Embedded methods
– Feature selection done as part of training

– Example: Regularization (Lasso, L1 regularization)
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Neural Network Architectures
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Feed-Forward Networks
• Neurons from each layer 

connect to neurons from 
next layer

Convolutional Networks
• Includes convolution layer 

for feature reduction
• Learns hierarchical 

representations

Recurrent Networks
• Keep hidden state
• Have cycles in 

computational graph



Feed-Forward Neural Network
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𝑎0
[1]

𝑎1
[1]

𝑎2
[1]

𝑎3
[1]

Layer 0 Layer 1 Layer 2

𝑊[2]

𝑏[1]
𝑏[2]

Training example
𝑥 = (𝑥1, 𝑥2, 𝑥3)

𝑎4
[1]

𝑎1
[2]

No cycles

𝑊[1]

𝜃 = (𝑏[1], 𝑊[1], 𝑏[2], 𝑊[2]) 



Multi-class classification
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Softmax classifier
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• Predict the class with highest probability
• Generalization of sigmoid/logistic regression to multi-class



Convolutional Nets
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RNN Architectures
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Given training set 𝑥1, 𝑦1 , … , 𝑥𝑁, 𝑦𝑁
Initialize all parameters 𝑊[ℓ], 𝑏[ℓ] randomly, for all layers ℓ
Loop 

Training NN with Backpropagation
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Update weights via gradient step

• 𝑊𝑖𝑗
[ℓ]

= 𝑊𝑖𝑗
[ℓ]

− 𝛼
Δ𝑖𝑗
[ℓ]

𝑁

• Similar for 𝑏𝑖𝑗
[ℓ]

Until weights converge or maximum number of epochs is reached

EPOCH

(𝑥(𝑖), 𝑦(𝑖))

𝑦(𝑖)



Mini-batch Gradient Descent

• Initialization
– For all layers ℓ

• Set 𝑊[ℓ], 𝑏[ℓ] at random

• Backpropagation
– Fix learning rate 𝛼

– For all layers ℓ (starting backwards)
• For all batches b of size B with training examples 𝑥(𝑖𝑏), 𝑦(𝑖𝑏)

–𝑊[ℓ] = 𝑊[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿( ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑊 ℓ

– 𝑏[ℓ] = 𝑏[ℓ] − 𝛼σ𝑖=1
𝐵 𝜕𝐿( ො𝑦(𝑖𝑏),𝑦(𝑖𝑏))

𝜕𝑏 ℓ
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PCA
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Autoencoders
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K means Algorithm
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Agglomerative clustering

• Algorithm:
– Place each data point into its own singleton group 

(cluster)

– Repeat
• Iteratively merge the two closest groups/clusters 

– Until: stopping condition is satisfied 

• Output
– Set of clusters

– Dendrogram (tree of how data was merged)

• Need to define distance or similarity between 
groups

53



54


