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Class Outline

Introduction — 1 week
— Probability and linear algebra review
Supervised learning - 5 weeks

— Linear regression

— Classification (logistic regression, LDA, kNN, decision trees,
random forest, SVM, Naive Bayes)

— Model selection, regularization, cross validation
Neural networks and deep learning — 1.5 weeks
— Back-propagation, gradient descent

— NN architectures

Unsupervised learning — 2.5 weeks

— Dimensionality reduction (PCA)

— Clustering (k-means, hierarchical)

Adversarial ML — 1 week

— Security of ML at testing and training time



Grading

Assignments — 20%

— 4-5 assignments based on studied material in class,

including programming exercises

— Language: R or Python; Jupyter notebooks

Final project — 25%

— Select your own project based on public dataset
— Submit short project proposal and milestone

— Presentation at end of class (10 min) and report
Exams — 50%

— Midterm — 25%

— Final exam — 25%
Class participation — 5%

— Participate in class discussion and on Piazza



Supervised Learning

Training
Data Pre- Feature Learning
processing extraction model
Lab.eled Normalization Selection Classification
(Typically) Regression
Testing

New Learning
data model

Healthy Price

Unlabeled , _
Sick Risk score

Classification Regression




Supervised Learning: Overview
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Review

ML is a subset of Al designing learning algorithms

* Learning tasks are supervised (e.g., classification
and regression) or unsupervised (e.g., clustering)

— Supervised learning uses labeled training data

* Learning the “best” model is challenging
— Select hypothesis space and loss function
— Design algorithm to min loss function (error on training)
— Bias-Variance tradeoff
— Need to generalize on new, unseen test data

— Occam'’s razor (prefer simplest model with good
performance)



Outline

* Probability review
— Random variables
— Expectation, Variance, CDF, PDF
— Example distributions
— Independence and conditional independence
— Bayes’ Theorem

* Linear algebra review
— Matrix, vectors
— Inner products
— Norms
— Distance



Probability review



Discrete Random Variables

* Let A denote a random variable
— A represents an event that can take on certain values
— Each value has an associated probability

* Examples of binary random variables:
— A =1have a headache
— A = Sally will be the US president in 2020

« P(A) is “the fraction of possible worlds in which
A is true”



Visualizing A

* Universe U isthe event space of all possible worlds
— Itsareais 1

- P(0) = 1
U

« P(A) = area of red oval
worlds in which

A is true

* Therefore:
P(A)+ P(—-A) =1
P(—A) =1— P(A) worlds in which A is false




Axioms of Probability

Kolmogorov showed that three simple axioms lead to the
rules of probability theory

— de Finetti, Cox, and Carnap have also provided compelling
arguments for these axioms

1. All probabilities are between 0 and 1:
0<P(A)<1

2. Valid propositions (tautologies) have probability 1, and
unsatisfiable propositions have probability O:

P(true) =1; P(false)=0

3. The probability of a disjunction is given by:
" P(Av B)=P(A) + P(B) - P(A A B)
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Interpreting the Axioms

L] The area of A can’t get
any smaller than O

A zero area would
mean no world could
ever have A true
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Interpreting the Axioms

<P(A) <1
(true) =1
(false) = 0
(Av B)=P(A) + P(B) - P(4 A B)

The area of A can’t get
any bigger than 1

An area of 1 would
mean A is true in all
possible worlds
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Interpreting the Axioms

« 0<P(A)<1

* P(true) =1

+ P(false) = 0

« P(Av B) = P(4) + P(B) - P(4 A B)

A AAB
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The union bound

For events A and B
P[AUB] < P[A] + P[B]

U

Axiom: P[AU B ] =P[A] + P[B] — P[A n B]
fANB =@, then P[AUB] =P[A] + P[B]

Example:
A, ={ allxin{0,1}" s.t Isb,(x)=11 } ; A,={ allxin{0,1}" s.t. msb,(x)=11 }

P[ Isb,(x)=11 or msb,(x)=11]=P[A,UA,] < %+h = 7

15



Negation Theorem

0<P(A) <1
P(true) = 1; P(false) = 0
P(Av B) =P(A) + P(B) - P(A A B)

From these we can prove:
P(-A)=1-P(A)
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Marginalization

0<P(A) <1
P(True) = 1; P(False) =0
P(Av B) =P(A) + P(B) - P(A A B)

From these we can prove:

P(A)=P(AANB)+ P(AN-B)
How?
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Random Variables (Discrete)

Def: a random variable X is a function X:U—V
Def: A discrete random variable takes a finite number of values: | V| is finite

Example: X is modeling a coin toss with output 1 (heads) or O (tail)

Pr[X=1] = p, Pr[X=0] = 1-p Bernoulli Random Variable

We write X <«— U to denote a uniform random variable (discrete) over U

forall ueU: Pr[X=u] = 1/|U]|

Example: If p=1/2; then X is a uniform coin toss

Probability Mass Function (PMF): p(u) = Pr[X = u]



Example

1. X is the number of heads in a sequence of n
coin tosses

What is the probability P[X = k]?

PIX =k] = (Z) p(1 —p)nFk Binomial Random Variable

2. X is the sum of two fair dice

What is the probability P|X = k] for k € {2, ..., 12}?
P[X=2]=1/36; P[X=3]=2/36; P[X=4]=3/36

For what k is P[X = k] highest?



Example discrete RVs

e X ~ Bernoulli(p) (where 0 < p < 1): one if a coin with heads probability p comes up
heads, zero otherwise.

N ifp=1
P(z) {l—p if p= 0

e X ~ Binomial(n,p) (where 0 < p < 1): the number of heads in n independent flips of a
coin with heads probability p.

p(z) = (Z)pr(l -p)"

e X ~ Geometric(p) (where p > 0): the number of flips of a coin with heads probability p
until the first heads.

p(z) = p(1—p)*"
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Multi-Value Random Variable

* Suppose A can take on more than 2 values

* Aisarandom variable with arity k if it can take on
exactly one value out of {v,,v,, ..., v, }

* Thus...
PA=v NA=v;)=0 ifi#j
P(A:'Ul\/A:’UgV\/A:U;L):l
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Multi-Value Random Variable

* We can also show that:

P(B)=P(BAN[A=unyVA=vV...VA=u)

P(B)=) P(BANA=u)

1=1

* This is called marginalization over A
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Continuous Random Variables

e X:U—V iscontinuous RV if it takes infinite number of values

 The cumulative distribution function CDF F: R — {0,1} for X is
defined for every value x by:

F(x) = Pr(X<x)
* The probability distribution function PDF f(x) for X is
f(x) = dF(x)/dx

Increasing

F(8)

J]—:

O e [ o
— =
o
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Example continuous RV

e X ~ Uniform(a,b) (where a < b): equal probability density to every value between a

and b on the real line.
1 fa<zx<bh
. b—a e &~
(=) = {() otherwise

e X ~ FEzxponential(\) (where A > 0): decaying probability density over the nonnegative

reals.
de % ifx >0
Iz) = {() otherwise

e X ~ Normal(u,o?): also known as the Gaussian distribution

f(z) = e Tz’
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Example CDFs and PDFs

Shape of fe Gausson pof Shape of the Exponential pdf Shape of e Uniform pdf
14

_ Shape of the Gaussan COFE Shape of the Expornental COF _ Shape of the Unform COE
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Expectation and variance

Expectation for discrete random variable X

Elg(x))2 Y  g(@)px(z).

reVal(X)

Properties
* Elag(X)] = a E[g(X)]
* Linearity: E[f(X) + g(X)] = E[f(X)] + E[g(X)]

Variance
Var[X] £ E[(X — E(X))?]
E(X - E[X])’] = E[X*-2E[X]X + E[X]’
—  E[X?] - 2E[X]|E[X] + E[X]?
—  E[X?] - E[X]?,
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Continuous RV

Expectation for continuous random variable X

&

Elg(X0) 2 [ g@)fx()da.

wf — A

Variance is similar!

Example: Let X be uniform RV on [a,b]
e What is the CDF and PDF?

 Compute the expectation and variance of X
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Conditional Probability

 P(A | B) = Fraction of worlds in which Bis true
that also have A true

U What if we already know
that Bis true?

That knowledge changes
the probability of A4

* Because we know we’rein a
world where Bis true

P(AA B)
P(B)
P(AAB) = P(A| B) x P(B)

P(A| B) =

Def: Events A and B are independent if and only if
Pr[AN B]=Pr[A] - Pr[B]

If A and B are independent

_ Pr[An B] Pr[A]Pr[B]
Pr[A|B] = P - priE] - Pr[A] .




Inference from Conditional Probability

P(AN B)
P(B)
P(ANB)=P(A| B) x P(B)

P(A| B) =

P(headache) = 1/10
v P(flu) = 1/40

a P(headache | flu) = 1/2
Headache )
Headaches are rare and flu is rarer, but
if you're coming down with the flu
there’s a 50-50 chance you’ll have a
headache.”




Inference from Conditional Probability

P(A N B)
P(B)
P(AANB)=P(A|B) x P(B)

P(A| B) =

P(headache) = 1/10
v P(flu) = 1/40

a» P(headache | flu) = 1/2
' Headache
One day you wake up with a headache.
You think: “Drat! 50% of flus are
associated with headaches so | must have
a 50-50 chance of coming down with flu.”

Is this reasoning good?
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Inference from Conditional Probability

P(AAB)
P(B)
P(AAB) = P(A| B) x P(B)

P(A| B) =

P(headache) = 1/10 Want to solve for:
P(flu) = 1/40 P(headache A flu) = ?
P(headache | flu) = 1/2 P(flu | headache) =7

P(headache A flu) = P(headache | flu) x P(flu)
=1/2x1/40 = 0.0125

P(flu | headache) = P(headache A flu) / P(headache)
= 0.0125/0.1 = 0.125
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Bayes’ Rule

P(A|B) =

P(B | A) x P(A)

P(B)

* Exactly the process we just used

* The most important formula in
probabilistic machine learning

(Super Easy) Derivation:
IP(ANAB)|= P(A| B) x P(B)
!P(B NA)=P(B|A)x P(A)
these are the same
Just set equal...
P(A|B)x P(B)=P(B|A) x P(A)
and solve...

S b i N 2 .;-‘ .{_(;..-
Bayes, Thomas (1763) An essay towards
solving a problem in the doctrine of
chances. Philosophical Transactions of
the Royal Society of London, 53:370-418
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Linear algebra
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Vectors and matrices

e \ectorin R"is an ordered
set of n real numbers.

— e.g.v=(1,6,3,4) isinRzl/'

— A column vector:

~ W o -

— Arow vector:\
1 6 3 4

* m-by-n matrix is an object
in R™"with m rows and n
columns, each entry filled
with a (typically) real
number:

\

(1 2 8)
4 78 6

9 3 2,



Norms

Vector norms: A norm of a vector | |x| | is informally a
measure of the “length” of the vector.

n 1/p
ol = (z )
1=1

— Common norms: L,, L, (Euclidean)

! n

Jelly =)l lllle = \ 7

1=1

- L

infinity

]| 0 = max; | ;]
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Vector products

We will use lower case letters for vectors The elements are

referred by x.

* Vector dot (inner) product:

.-rTy e R = [ Ty T

Ln ]

(71

i Yn

n
= E Lili.
1=1

If uev=0, ||u]|, =0, ||v||,!= 0 -> u and v are orthogonal
If uev=0, ||u||, =1, ||vl[, =1 -> uand v are orthonormal

e Vector outer product:

vyt € R™" = [ v v

Yn |

.‘l‘lyl -'1'13/2 e -'1‘13/-;1.
Loy  XalYyz - Laly
ImYr ITmlY2 -+ ITmln
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Matrix multiplication

We will use upper case letters for matrices. The elements
are referred by Ai,;.

* Matrix product: 1 e Rmxn B RM<P

C'= AB e R™"

T
f /
Cij = E A B

k=1
eg A = [all alzj B — {bn blzj
dy; Ay b,, b,

AB (aﬂbn +aphy  ah, + alzbzzj
a21bll + a22bZl a21b12 + a22bZZ



Properties

* Associativity /

(AB)C = A(BC)

 Distributivity /
A(B+C) = AB + AC
* Commutativity

AB = BA X




o o 9

fa 0 0)
O b O

\OOC

O -~ O T
- D O

Special matrices

Diagonal

Tri-diagonal

fa b
0 d

(100
0 1 0
0 0 1,

0 O

c)
€

f)

Upper-triangular

Lower-triangular

| (Identity matrix)



Matrix transpose

Transpose: You can think of it as
— “flipping” the rows and columns
OR

— “reflecting” vector/matrix on line

e.g. (a)
g [bj -(@ o) o (AT)T = A
a b) (a c o (AB)T = BT AT
c d) (b d e« (ALB)T — AT+ BT

A is a symmetric matrix if 4 = A"



References

Probability

e Review notes from Stanford's machine
learning class

* Sam Roweis's probability review

Linear algebra

e Review notes from Stanford's machine
learning class

e Sam Roweis's linear algebra review



http://cs229.stanford.edu/section/cs229-linalg.pdf
http://cs.nyu.edu/~dsontag/courses/ml12/notes/probx.pdf
http://cs229.stanford.edu/section/cs229-prob.pdf
http://cs.nyu.edu/~dsontag/courses/ml12/notes/linear_algebra.pdf

