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Class Outline
• Introduction – 1 week

– Probability and linear algebra review

• Supervised learning - 5 weeks
– Linear regression
– Classification (logistic regression, LDA, kNN, decision trees, 

random forest, SVM, Naïve Bayes)
– Model selection, regularization, cross validation

• Neural networks and deep learning – 1.5 weeks
– Back-propagation, gradient descent
– NN architectures

• Unsupervised learning – 2.5 weeks
– Dimensionality reduction (PCA)
– Clustering (k-means, hierarchical)

• Adversarial ML – 1 week
– Security of ML at testing and training time
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Grading

• Assignments – 20%
– 4-5 assignments based on studied material in class, 

including programming exercises
– Language: R or Python; Jupyter notebooks

• Final project – 25%
– Select your own project based on public dataset
– Submit short project proposal and milestone
– Presentation at end of class (10 min) and report

• Exams – 50%
– Midterm – 25%
– Final exam – 25%

• Class participation – 5%
– Participate in class discussion and on Piazza
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Review

• ML is a subset of AI designing learning algorithms

• Learning tasks are supervised (e.g., classification 
and regression) or unsupervised (e.g., clustering)

– Supervised learning uses labeled training data

• Learning the “best” model is challenging

– Select hypothesis space and loss function

– Design algorithm to min loss function (error on training)

– Bias-Variance tradeoff

– Need to generalize on new, unseen test data

– Occam’s razor (prefer simplest model with good 
performance)

6



Outline

• Probability review
– Random variables

– Expectation, Variance, CDF, PDF

– Example distributions 

– Independence and conditional independence

– Bayes’ Theorem

• Linear algebra review
– Matrix, vectors

– Inner products

– Norms

– Distance
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Probability review
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Discrete Random Variables
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Visualizing A
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Axioms of Probability
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Interpreting the Axioms
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Interpreting the Axioms
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Interpreting the Axioms
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The union bound

• For  events  A and  B
P[ A ∪ B ]  ≤  P[A] + P[B]

Axiom: P[ A ∪ B ]  = P[A] + P[B] – P[A ∩ B]

If A ∩ B = Φ, then P[ A ∪ B ]  = P[A] + P[B]

Example:
A1 = {  all x in {0,1}n  s.t  lsb2(x)=11  }    ;    A2 = {  all x in {0,1}n  s.t. msb2(x)=11  }

P[ lsb2(x)=11 or msb2(x)=11 ] = P[A1∪A2]  ≤  ¼+¼  =  ½ 

A
B
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Negation Theorem
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Marginalization
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Random Variables (Discrete)

Def:  a random variable  X  is a function     X:U⟶V 
Def: A discrete random variable takes a finite number of values: |V| is finite

Example:    X is modeling a coin toss with output 1 (heads) or 0 (tail)
Pr[X=1] = p, Pr[X=0] = 1-p 

We write    X ⟵ U   to denote a uniform random variable (discrete) over U 

for all   u∈U:     Pr[ X = u ]  =  1/|U|

Example: If p=1/2; then X is a uniform coin toss

Probability Mass Function (PMF): p(u) = Pr[X = u]
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Example

1. X is the number of heads in a sequence of n
coin tosses

What is the probability P[𝑋 = 𝑘]?

P 𝑋 = 𝑘 = (
𝑛
𝑘
) 𝑝𝑘 1 − 𝑝 𝑛−𝑘 Binomial Random Variable

2. X is the sum of two fair dice
What is the probability P[𝑋 = 𝑘] for 𝑘 ∈ {2,… , 12}?

P[X=2]=1/36; P[X=3]=2/36; P[X=4]= 3/36
For what k is P[𝑋 = 𝑘] highest?
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Example discrete RVs
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Multi-Value Random Variable
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Multi-Value Random Variable
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Continuous Random Variables

• X:U⟶V is continuous RV if it takes infinite number of values

• The cumulative distribution function CDF F: R ⟶ {0,1} for X is 
defined for every value x by:

F(x) = Pr(X  x) 

• The probability distribution function PDF f(x) for X is

f(x) = dF(x)/dx

A pdf and associated cdf

Increasing
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Example continuous RV
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Example CDFs and PDFs
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Expectation and variance

Expectation for discrete random variable X

Properties
• 𝐸 𝑎𝑔 𝑋 = 𝑎 𝐸 𝑔 𝑋
• Linearity: 𝐸 𝑓 𝑋 + 𝑔 𝑋 = 𝐸 𝑓 𝑋 + 𝐸 𝑔 𝑋

Variance
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Continuous RV

Expectation for continuous random variable 𝑋

Variance is similar!

Example: Let 𝑋 be uniform RV on [a,b]
• What is the CDF and PDF?
• Compute the expectation and variance of 𝑋

27



Conditional Probability

Def:   Events A and B are independent if and only if  
Pr[ A ∩ B ] = Pr[A] ∙ Pr[B]

If 𝐴 and 𝐵 are independent

Pr[𝐴|𝐵] =
Pr 𝐴 ∩ 𝐵

Pr[𝐵]
=
Pr 𝐴]Pr[𝐵

Pr[𝐵]
= Pr[A]
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Inference from Conditional Probability
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Inference from Conditional Probability
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Inference from Conditional Probability 
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Bayes’ Rule
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Linear algebra
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Vectors and matrices

• Vector in Rn is an ordered 
set of n real numbers.

– e.g. v = (1,6,3,4) is in R4

– A column vector:

– A row vector:

• m-by-n matrix is an object 
in Rmxn with m rows and n 
columns, each entry filled 
with a (typically) real 
number:
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Vector norms: A norm of a vector ||x|| is informally a 
measure of the “length” of the vector.

– Common norms: L1, L2 (Euclidean)

– Linfinity

Norms
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Vector products

• Vector dot (inner) product:

• Vector outer product:

We will use lower case letters for vectors The elements are 

referred by xi.

If u•v=0, ||u||2 != 0, ||v||2 != 0 → u and v are orthogonal

If u•v=0, ||u||2 = 1, ||v||2 = 1 → u and v are orthonormal
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Matrix multiplication

• Matrix product:










++

++
=









=








=

2222122121221121

2212121121121111

2221

1211

2221

1211
,

babababa

babababa
AB

bb

bb
B

aa

aa
A

We will use upper case letters for matrices. The elements 

are referred by Ai,j. 

e.g.
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Properties

• Associativity

𝐴𝐵 𝐶 = 𝐴 𝐵𝐶

• Distributivity

𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶

• Commutativity

𝐴𝐵 = 𝐵𝐴
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Special matrices
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Matrix transpose

Transpose: You can think of it as 
– “flipping” the rows and columns 

OR 
– “reflecting” vector/matrix on line 
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e.g.

A is a symmetric matrix if 𝐴 = 𝐴𝑇
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References

Probability

• Review notes from Stanford's machine 
learning class

• Sam Roweis's probability review

Linear algebra

• Review notes from Stanford's machine 
learning class

• Sam Roweis's linear algebra review
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http://cs229.stanford.edu/section/cs229-linalg.pdf
http://cs.nyu.edu/~dsontag/courses/ml12/notes/probx.pdf
http://cs229.stanford.edu/section/cs229-prob.pdf
http://cs.nyu.edu/~dsontag/courses/ml12/notes/linear_algebra.pdf

