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Review

To train neural networks, need to decide first on
architecture

— Number of layers, number of hidden units,
connections between neurons, activation functions

Randomly initialize parameters

-or each training example, use forward
oropagation to compute prediction

Use backpropagation to propagate the error from
last layer back into the network

Stochastic Gradient Descent with mini-batch
update is the default optimization method




Neural Network Architectures

Feed-Forward Networks

* Neurons from each layer
connect to neurons from
next layer

Deep Feed Forward (DFF)
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Convolutional Networks

* Includes convolution layer
for feature reduction

* Learns hierarchical
representations

| X XX X |

Recurrent Networks

* Keep hidden state

* Have cyclesin
computational graph




Feed-Forward Neural Network

Training example
x = (X1, %2,%3)

(Input Layer) (Hidden Layer) (Output Layer)

Layer O Layer 1 Layer 2

No cycles O = (b[l], wlil pl2l w2l



Convolutional Nets

RELU RELU
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Mini-batch Gradient Descent

* |nitialization
— For all layers ¥
e Set W1 plfl a3t random
* Backpropagation
— Fix learning rate «

— For all layers ¢ (starting backwards)
* For all batches b of size B with training examples x(?), yy(t0)

— Wl = —qYB oWy
ow ]

o (ib b
—plfl = plil — g 3B ALED,y(D)
abl?]




Training NN with Backpropagation

Given training set (x{,v1), ..., (Xn, V)
Initialize all parameters W41 bl*I randomly, for all layers ¢
Loop

Set A =0 Vi,i,j

For each training instance (x®,y®)
Set all) = x;
Compute {a'?), .. .. alX)} via forward propagation EPOCH
Compute 6 = all) — y®

Compute errors {§=1 52} | |
Compute gradients AE? = Afi) — a_g.”dg*“
Update weights via gradient step
[£] [4] A[{i]
. — — gL
Wi = wif - o
[£]

e Similar for bl.]
Until weights converge or maximum number of epochs is reached



Outline

* Recurrent Neural Networks (RNNs)

— One-to-one, one-to-many, many-to-one, many-to-
many

— Blog by Andrej Karpathy

* http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

* Unsupervised learning

* Dimensionality reduction
— PCA



RNN Architectures

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

\ e.g. Image Captioning
image -> sequence of words



RNN Architectures

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

\ e.g. Sentiment Classification
sequence of words -> sentiment
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RNN Architectures

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

I Pt f tt t ot ot

\ e.g. Machine Translation
seq of words -> seq of words



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
I Pt f Pt Pt
f f Pt Pt Pt

/

e.g. Video classification on frame level
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hi|= fw|(Pi—1h|z4)
new state / old state input vector at t
some time step
some function -

with parameters W

Notice: the same function and the same set
of parameters are used at every time step.
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RNN: Computational Graph
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RNN: Computational Graph

Re-use the same weight matrix at every time-step

W L W 2 W 3
X, X, X,

15



One-to-Many

Y3 Y3 Y3 Yr
T T T T
h1—>fw—>h2—b~fw—b~h3—> —l-h_l_
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Many-to-Many

y1 y2

T T

h1 = fW — h2 = fW —
)(2 )(3
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Many-to-One

18



Example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

: Language Model

input layer

input chars:

1
0
0
0
uhn

O lco=o

= o000

“ |lo~0co0o

19



Example: Language Model

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

hi = tanh(Whphi—1 + Wipat)

0.3
hidden layer | -0.1

0.9

input layer

1
0
0
0
l(h"

input chars:

Y

0.1

-0.5
-0.3

W_hh| -

= |loa~0co0O

20



Example: Language Model

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars:

&.esl

1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
-3.0 -1.0 1.9 -0.1
4.1 1.2 1.1 2.2
A
| o
0.3 1.0 0.1 (w hn|-0-3
-0.1 > 0.3 > 05— 09
0.9 0.1 -0.3 0.7
A
T T TW_xh
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
“h” “e” “17 i s
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Training RNNs

Forward through entire sequence to

Backpropagation through time eniit sequence (o compute gracient
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Training RNNs

Truncated Backpropagation through time

Loss

AN

. L 1 L N\
I S N N SN S T R N
I T N ittt ¢t

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps
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Writing poetry

THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty’s rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, —
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak’st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer "This fair child of mine
Shall sum my count, and make my old excuse,’
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.




Writing poetry

t f' t tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne ‘nhthnee e
at Tirst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

j train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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Writing geometry proofs

The Stacks Project: open source algebraic geometry textbook

2 The Stacks Project
home about tagsexplained taglookup browse search Dbibliography recentcomments blog add slogans
Browse chapters Parts
- 1. Preliminaries
Part Chapter online TeXsource view pdf 2. Schemes
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex() pdf > 4. Algebrai
> : . 5. Topics in Geometry
2. Conventions onlfne tex() pdf > & Dilianiton St
3. SetTheory online tex() pdf > 7. Algebraic Stacks
4. Categories online tex() pdf > 8. Miscellany
5. Topology infng tex() pdf > Statistics
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex() pdf > The Stacks project now consists of
8. Stacks online tex() pdf > o 455910 lines of code
9. Fields online tex() pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex() pdf > o 2366 sections

Latex source

The stacks project is licensed under the GNU Free Documentation License




Writing geometry proofs

Proof. Omitted. 0

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on Xy, we
have

Ox (F) = {morphy xo, (G.F)}
where G defines an isomorphism F — F of O-modules. 0
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7?. O
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complez.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: XY 2Y Y 3Y xxY - X.
be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.
(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. 0

This since F € F and r € G the diagram

R —

l

§——Ox:

=a —>a X

l

Spec(Ky) Morse d(Ox,,,.G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and
e the composition of G is a regular sequence,
e Oy is a sheaf of rings.
O

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. o

Proof. This is clear that G is a finite presentation, see Lemmas 77,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Ox:— Fz -UOx,,,.)— O035!0x,(0%,)
is an isomorphism of covering of Oy, . If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. o

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??, This is a
sequence of F is a similar morphism.
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Example RNN: LSTM

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

vector from

f: Forget gate, Whether to erase cell

i: Input gate, whether to write to cell

g: Gate gate (?), How much to write to cell
o: Output gate, How much to reveal cell

below (X)
X sigmoid | — | i
h sigmoid | — | f 2 o
W Lo o |w(f
vector from sigmoid | — | o ol| o Ty
before (h) g tanh
tanh — = :
Ct :fQCt_l ‘+"l@g
*
4h x 2h 4h 4*h ht = o ® tanh(c;)

Capture long-term dependencies by using
“memory cells”




LSTM

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997]
Memory Cell

t-1 T | t
1 I _

i
= |
W— _L’G) tanh f = - he—1
-»g_l_' l 0 o w Ty
h
h — T stack e [ N ) tan
t1 $ e ht/ cc=fOc_14+i0g
)I( Hidden hi = o ® tanh(c;)
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Summary RNNs

RNNS maintain state and have flexible design
— One-to-many, many-to-one, many-to-many
Applicable to sequential data

LSTM is one example RNN architecture

Better and simpler architectures are a topic of
active research



Unsupervised Learning

Supervised learning used labeled data pairs (x, y)
to learn a function f : X—Y

— But, what if we don’t have labels?

No labels = unsupervised learning

Only some points are labeled = semi-supervised
learning

— Labels may be expensive to obtain, so we only get a few

31



Unsupervised Learning

Different learning tasks

Dimensionality reduction

— Project the data to lower dimensional space
— Example: PCA (Principal Component Analysis)
Feature learning

— Find feature representations

— Example: Autoencoders

Clustering

— Group similar data points into clusters
— Example: k-means, hierarchical clustering



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Standard metrics
for evaluation

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Difficult to evaluate

33



How Can we Visualize High-
Dimensional Data?

Difficult to see the correlations between the features...

H-WBC | H-RBC H-Hgb H-Hct H-MCV | H-MCH | H-MCHC

A1 8.0000 48200 | 14.1000| 41.0000| 85.0000| 29.0000| 34.0000

A2 7.3000 5.0200 | 14.7000 | 43.0000 ( 86.0000| 29.0000| 34.0000

o A3 4.3000 44800 | 14.1000| 41.0000| 91.0000| 32.0000| 35.0000
2 A4 7.5000 44700 | 14.9000| 45.0000| 101.0000 | 33.0000| 33.0000
© A5 7.3000 5.5200 | 15.4000| 46.0000| 84.0000| 28.0000| 33.0000
& A6 6.9000 48600 | 16.0000| 47.0000| 97.0000| 33.0000| 34.0000
— A7 7.8000 46800 | 14.7000| 43.0000| 92.0000| 31.0000| 34.0000
A8 8.6000 48200 | 15.8000| 42.0000| 88.0000| 33.0000| 37.0000

A9 5.1000 47100 | 14.0000 | 43.0000| 92.0000| 30.0000| 32.0000

Features




Data Visualization

e |s there a representation better than the raw features?
e |s it really necessary to show all the 53 dimensions?
e ... whatif there are strong correlations between the features?

Could we find the smallest subspace of the 53-D space
that keeps the most information about the original data?

One solution: Principal Component Analysis

35



Principal Component Analysis

u;

A
'\,//
vl

A

Orthogonal projection of data onto lower-dimension linear
space that...

e maximizes variance of projected data (purple line)
e minimizes mean squared distance between
data point and projections (sum of blue lines)

36



The Principal Components

e Vectors originating from the center of mass

* Principal component #1 points in the direction of the
largest variance

e Each subsequent principal component...
e is orthogonal to the previous ones, and

e points in the directions of the largest variance of the
residual subspace

37



2D Gaussian Data

38



1st PCA Axis

39



219 PCA Axis

40



PCA Example

> =
>

41



Eigenvectors

e Let A be a matrix and consider Ax = Ax
* Terminology

— Eigenvalue of matrix: A
— Eigenvector: x for which Ax = Ax

* Connection to PCA

— First principal component is largest eigenvector of
covariance matrix X2 = XX

— Second principal component is orthogonal to first
and second eigenvector of X



Dimensionality Reduction

Can ignore the components of lesser significance

25 -

20 -

-
)]
I

-
o
1

Variance (%)

U"I

NN HH,H,HH,D,D,

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues
are small, you don’t lose much

— choose only the first k eigenvectors, based on
their eigenvalues

— final data set has only £ dimensions
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PCA Algorithm

e Given data {x,, ..., X}, compute covariance matrix 2
e X isthe n x ddata matrix
e Compute data mean (average over all rows of X)

e Subtract mean from each row of X (centering the data)
e Compute covariance matrix 2 = X™X (Zisdxd)

e PCA basis vectors are given by the eigenvectors of
e Q,A = numpy.linalg.eig(X)

e {q, N}, , arethe eigenvectors/eigenvalues of Z
===

e Larger eigenvalue = more important eigenvectors

44



@101l 1661...
11 51T 1868
x—=]00111000...

| 70 101 DO

PCA

X has d columns

Q is the eigenvectors of ; _
columns are ordered by importance!l ~ Q18 dXd
| .34 0.23 —-0.30 -0.23 1
0.04 0.13 —-0.40 0.21
E> Q = —0.64 0.93 0.61 0.28
020 —0.83 0.78 —0.93
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PCA

e Each column of Q gives weights for a linear
combination of the original features
0.34 0.23 0.30 —0.23

0.04 0.13 —O0. 0.2
Q= —0.64 0.93 0.61

- —0.20 —-0.83 0.78 —0.93

I

= 0.34 feature1 + 0.04 feature2 — 0.64 feature3 + ...




PCA

e We can apply these formulas to get the new
representation for each instance x

01011001... T 0.34 | 0.23 ]
11011100... 0.04 = 0.13
v 1 00111000... |x; é: —0.64 = 0.93
110101000... | - —0.20 —0.83

e The new 2D representation for x; is given by:
Z5, = 0.34(0) + 0.04(0) - 0.64(1) + ...
T3, = 0.23(0) + 0.13(0) + 0.93(1) + ...
* The re-projected data matrix is given by X = Xé)
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Visualizing data

original data space
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Summary: PCA

PCA creates a lower-dimensional feature
representation

— Linear transformation
Can be used for visualization

Can be used with supervised on unsupervised
learning

— Very common to use classification after PCA
transformation

Main drawback
— No interpretability of resulting features



Unsupervised Learning

Different learning tasks

Dimensionality reduction

— Project the data to lower dimensional space
— Example: PCA (Principal Component Analysis)
Feature learning

— Find feature representations

— Example: Autoencoders

Clustering

— Group similar data points into clusters
— Example: k-means, hierarchical clustering



Autoencoders

Unsupervised approach for learning a lower-
dimensional feature representation from unlabeled
training data

Features 7

T Encoder

Input data T




Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation

from unlabeled training data

Features

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

=/

I Encoder

Input data

= % J = V'

A
e

PR el

ol MRS
il « 63
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Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

, o Later: Deep, fully-connected
Q: Why dimensionality Later- ReLU CNN
reduction?

Features 2 .iﬁ e |
I Encoder ’4‘ l@

g 5 R
Input data €T -E € .E




Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed 7
input data
T Decoder
Features z
T Encoder
€T

Input data




Autoencoders

Reconstructed data

HemiNE
BEXL&5S
TS
i <« HSS

Encoder: Layer conv
Decoder: 4-layer upconv

*

In ut data

e = N
RN L&e

ol MRS S
il < S
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Training Autoencoders

Doesn’t use labels!
Train such that features

can be used to L2 Loss function:
reconstruct original data |z — Z||* -
Reconstructed 7
input data
T Decoder
Features yA
’[ Encoder
€I

Input data
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Decoders

Decoders are only useful in training
Reconstruct original data

Reconstructed

input data

Features

throw away decoder
Encoder

Input data

|
l
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Using Features for Classification

Predicted Label

Encoder can be

Loss function
(Softmax, etc)

AN

Classifier

used to initialize a Features

supervised model

Encoder

Input data

|
|

Fine-tune
encoder
jointly with
classifier
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Summary Autoencoders

Autoencoders can be used to learn new
features

Applicable to sparse data

Minimize reconstruction error by using
encoder and decoder
— Unsupervised (no labels on data)

Encoder can be used as standalone with
classification model
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