DS 4400

Machine Learning and Data Mining |

Alina Oprea
Associate Professor, CCIS
Northeastern University

November 6 2018

Review

 Deep Learning has the ability to learn hierarchy of
features

— Performs better with more training data

 Neural Networks can be shallow or deep
— Their power is given by non-linear activations
— XOR can be learned with 1 hidden layer

 Feed-Forward architectures
— Multi-Layer Perceptron (MLP) is fully connected
— Convolutional Neural Networks
— Activation functions: sigmoid, RelLU, tanh

— Can be used with sigmoid in last layer for binary
classification and softmax for multi-class classification

Outline

* Convolutional Neural Networks
— Recap: convolution layer
— Max pooling
— Architectures

* Training with backpropagation
— Initialization
— Derivation of gradients
— Example

Convolutional Nets

e Particular type of Feed-Forward Neural Nets
— Invented by [LeCun 89]

* Applicable to data with natural grid topology
— Time series
— Images

* Use convolutions on at least one layer
— Convolution is a linear operation

— Also use pooling operation

— Used for dimensionality reduction and learning
hierarchical feature representations

Convolutional Nets

RELU RELU

>
=T
i
o
|
=
L
o

RELU RELU

CONV

CONV

—

CONV

—

CONV

R

—

CONV

— e

CONV
}

e

—

AYANSENRAS

b TRV TR T
NNENSOEARA
1Y S T 1LY Y O
WENELNENAN
NAEEONENAN
AR ORI PN
) O A I YR LT
() O S L

P or

Convolutions

A closer look at spatial dimensions:

7 7

7X7 input (spatially)
assume 3x3 filter

=> 5x5 output

Convolutions with stride

7X7 input (spatially)
assume 3x3 filter
applied with stride 2

7 7 7

=> 3x3 output!

Convolution Layer

__— 32x32x3 image
5x5x3 filter w

V
——0

=\

"™~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wTa:+b

N\

W |

N

w |

N\

N

w |

Convolution Layer

__— 32x32x3 image activation maps
~_ 5x5x3filter %
>O convolve (slide) over all

spatial locations
/ 28

1

28

Second, green filter

=\

activation maps

Convolution Layer

28

6 filters

28

Summary: Convolution Layer

Summary. To summarize, the Conv Layer:

Accepts a volume of size W; x H; x D,
Requires four hyperparameters:
o Number of filters K,
o their spatial extent F,
o the stride S,
o the amount of zero padding P
Produces a volume of size Wy x Hy x Dy where
o Wo=(W, —F+2P)/S+1
o Hy = (Hy — F + 2P)/S + 1 (i.e. width and height are computed equally by symmetry)
o D2 =K
With parameter sharing, it introduces F - F - D, weights per filter, for a total of (F' - F'- D) - K weights
and K biases.
In the output volume, the d-th depth slice (of size Wo x H>) is the resuilt of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

10

Convolution layer: Takeaways

* Convolution is a linear operation

— Reduces parameter space of Feed-Forward Neural
Network considerably

— Capture locality of pixels in images
— Smaller filters need less parameters

— Multiple filters in each layer (computation can be
done in parallel)

e Convolutions are followed by activation
functions

— Typically ReLU

Convolutional Nets

RELU RELU

>
=T
i
o
|
=
L
o

RELU RELU

CONV

CONV

—

CONV

—

CONV

R

—

CONV

— e

CONV
}

e

—

AYANSENRAS

b TRV TR T
NNENSOEARA
1Y S T 1LY Y O
WENELNENAN
NAEEONENAN
AR ORI PN
) O A I YR LT
() O S L

P or

12

Pooling layer

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

—

> o 112
224 downsampling
112

224

13

Single depth slice

Max Pooling

1

112 |4

3

6 | 7

max pool with 2x2 filters
and stride 2

8
21110
4

y

Accepts a volume of size W; x H; x D,
Requires three hyperparameters:

o their spatial extent F',

o the stride S,

Produces a volume of size W, x Hy x D, where
o Wo=(W) —F)/S+1
° H2 :’(Hl —F)/s-‘-l

o Dy = Dy

Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

14

Convolutional Nets

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONV CONVl CONVlCONVl

RRERN

¥

car
frick
alfplane
Ship

horse

;
=
=
=
g
—
=
=

A7 10 LI L%

15

LeNet 5

[LeCun et al., 1998]

Image Maps
Input

Fully Connected

7

Convolutions
Subsampling

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

16

History

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

First CNN-based winner

152 layers
A \

\ 16.4

v 11.7

shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 | ILSVRC'12 | ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

VGGNet

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG 16Net)

Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13
(ZFNet)
->7.3% top 5 error in ILSVRC’14

FC 1000

FC 4096

FC 4006
Pool

=

}

AlexNet

| Softrmax] | FC 4096 |
| FC 1000] | FC 4096]
l FC 4096] | Poo |
[FC 4006] |]
| Pool | |]
| ||]
| | | |
| | Pool]
| Pool | |]
| ||]
|] |]
|] | 2 1
| Pool | | Poo |
|] | |
|] |]
| Pool | | Poo |
| || |
|] |]
| Pool | | Pog |
|] |]
|] | l
| Input | Input]
VGG16 VGG19
138 million
18

parameters

GoogleNet

Case Study: GooglLeNet

[Szegedy et al., 2014] ~Nealeale

| | TEE =
Deeper networks, with computational =
efficiency NEET T
e 3T
- 22 layers S ==
- 114 - ” \\/-—/ [==]
- Efficient “Inception” module ‘ .-
- No FC layers oo b -
- Only 5 million parameters! T toge
12x less than AlexNet Inception module ST
- ILSVRC’14 classification winner =
(6.7% top 5 error) M

Summary CNNs

Convolutional Nets are Feed-Forward Networks with at
least one convolution layer and optionally max pooling
layers

Convolutions enable dimensionality reduction

Much fewer parameters relative to Feed-Forward
Neural Networks

— Deeper networks with multiple small filters at each layer is
a trend

Fully connected layer at the end (fewer parameters)
Learn hierarchical feature representations
— Data with natural grid topology (images, maps)

Reached human-level performance in ImageNet in
2014

Outline

* Convolutional Neural Networks
— Recap: convolution layer
— Max pooling
— Architectures

* Training with backpropagation
— Initialization
— Derivation of gradients
— Example

Feed-Forward Neural Network

Training example
x = (X1, %2,%3)

(Input Layer) (Hidden Layer) (Output Layer)

Layer O Layer 1 Layer 2

No cycles 22

Forward Propagation

* The input neurons first receive the
data features of the object. After
processing the data, they send their
output to the first hidden layer.

* The hidden layer processes this output
and sends the results to the next
hidden layer.

&
XU/
«(

Y;
o

X
X
’«,
@

* This continues until the data reaches

I’M
N9
output layer
the final output layer, where the . ‘ .
output value determines the object's input layer

classification. hidden layer 1 hidden layer 2

)

* This entire process is known as
Forward Propagation, or Forward prop.

23

Perceptron Learning

0« 0+ aly— h(x))x

Equivalent to the intuitive rules:
— If output is correct, don’t change the weights
— If output is low (A(x) =0, y = 1), increment
weights for all the inputs which are 1
— If output is high (A(x) = 1, y = 0), decrement
weights for all inputs which are 1

Perceptron Convergence Theorem:

* If there is a set of weights that is consistent with the training
data (i.e., the data is linearly separable), the perceptron
learning algorithm will converge [vinicksy & Papert, 1969]

Batch Perceptron

Given training data {(m("‘i')?y(i))}é_l
Let 6 < [0,0,...,0] -
Repeat:
Let A « [0,0,...,0]
fori=1...n,do

if y(i).’,l’:(i)g <0 // prediction for i*" instance is incorrect
A — A+ yDgl®
A A/n // compute average update
0 — 0+ aA

Until ||All2 < €

* Simplest case: a=1and don’t normalize, yields the fixed

increment perceptron
* Each increment of outer loop is called an epoch

25

Learning in NN: Backpropagation

* Similar to the perceptron learning algorithm, we cycle
through our examples
— If the output of the network is correct, no changes are made
— If there is an error, weights are adjusted to reduce the error

* The trick is to assess the blame for the error and divide
it among the contributing weights

Training data
Dimension d

(1)
Xd

w 1]

Example

"_;:1| —]irllllr';r.:' { f_;:ll
altl — _'G'[L[I]]
2 _ gl
”::‘?l — ﬂ[ﬂ:[j].l

HE R WEBE

o

!;.lil — g¥ = ﬂ{qu:]

27

Parameter Initialization

How about we set all W and b to 0?
First layer

_ M = whly 4 bl (0,..0)

1 1
—al'l = g(zm) = (5, ""E)
Second layer
_ % = w1 plE-(0,..0)

1 1
GO
Third layer
_ 2B = wBlx 4 pBl0,..0)

) =p(a) =)

Initialize with random values instead!

Training

Training data x(V ,y(l), o (N) ,y(N)
One training example x(V = (xf), xc(li)) ,label y

One forward pass through the network
— Compute prediction y

Loss function for one example

- LG, y) =—-[(1—-y)log(l —y) + ylogy]

Cross-entropy loss

Loss function for training data

—JW,b) =% L 3D, yD) + AR(W, b)

Reminder: Logistic Regression

N

7(0) = =Y [y logho(2) + (1 =) log (1~ ho ()

i=1
* Cost of a single instance:

| N —log(he(x)) ify=1
cost (he(z),y) = { —log(1 — he(x)) ify=0

* Can re-write objective function as
N

J(0) = Z cost (hg(m(i))jy(":))

1=1
\ J
|

Cross-entropy loss

30

Gradient Descent

* |nitialize @ 0 = (W,b)
¢ Repeat until convergence
7 imult dat
9<—9—O{ J@ 5|m_u dneous upaate
Y 3/ 00 (9) forj=0...d
e
learning rate (small)
e.g.,a=0.05 3

-05 0 05 1 15 2 25

0
Converges for convex objective

Could get stuck in local minimum for non-convex objectives

31

GD for Neural Networks

e |nitialization
— For all layers ¥
e Set WV], bltlat random

* Backpropagation
— Fix learning rate «
— For all layers € (starting backwards)

« W = Wil — g ¥V 0L@Oy0)

5D 4@
o« pltl = pltl — g 3N LG VYY)

Backpropagation Intuition

\

o i'., @\
\\ i \1 \
Y Y
".III h E i Ei |
@ | @ \
\ I \1 JIr
Y .H . f
@ 1 /{

o) = “error” of node jin layer [

i 0 it (D)
Formally, 0; = -0 cost (x®)

J

cost(x®W) = yWloghg(x®) + (1 — y®)log(1 — hy(xV))

33

Backpropagation Intuition

NEPRED)
@v@
TG

- al
5[3]
- a7
21
5[2] [3] [3]
51 ~a; —Yy

2] _ <[3lyp7[3]
o) = “error” of node jin layer [0y 01 Wy

m_ _9 :
Formally, 4, = o — gy cost (x®)

J

cost(x®) = yOloghy(x®) + (1 — yD)log(1 — he(xV))

34

Backpropagation Intuition

1] _ a712] ¢l2] 12] o12]
52 ~ Wy 51 + W, 52
o) = “error” of node jin layer [

i 0 it (D)
Formally, 0; = -0 cost (x®)

J
cost(x®) = yOloghy(x®) + (1 — yD)log(1 — he(xV))

35

Materials

e Stanford tutorial on training Multi-Layer
Neural Networks

— http://ufldl.stanford.edu/tutorial/supervised/Mult

iLayerNeuralNetworks/

* Notes on backpropagation by Andrew Ng

— http://cs229.stanford.edu/notes/cs229-notes-
backprop.pdf

* Deep learning notes by Andrew Ng

— http://cs229.stanford.edu/notes/cs229-notes-
deep learning.pdf

36

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
http://cs229.stanford.edu/notes/cs229-notes-backprop.pdf
http://cs229.stanford.edu/notes/cs229-notes-deep_learning.pdf

Review

To train neural networks, need to decide first
on architecture

— Number of layers, number of hidden units,
connections between neurons, activation
functions

Randomly initialize parameters

For each training example, use forward
propagation to compute prediction

Use backpropagation to propagate the error
from last layer back into the network

Acknowledgements

* Slides made using resources from:
— Yann LeCun
— Andrew Ng
— Eric Eaton
— David Sontag
— Andrew Moore

* Thanks!

