DS 4400

Machine Learning and Data Mining |

Alina Oprea
Associate Professor, CCIS
Northeastern University

November 1 2018

Review

* Deep Learning has the ability to learn
hierarchy of features

— Performs better with more training data
— End-to-end learning

 Feed-Forward architectures
— Neurons from one layer

— At each layer linear operation followed by non-
linear activation function

— Activation functions: sigmoid, ReLU, tanh (for
regression)

Outline

* Feed-Forward architectures
— Non-linear activations
— Multi-Layer Perceptron
— Multi-class classification (softmax unit)
— Representing Boolean functions

* Convolutional Neural Networks
— Convolution layer
— Max pooling layer

Performance of Deep Learning

New Al methods
(deep learning)

@
O
-
©
=
. -
O
‘T
0
o

Amount of data

Deep Learning Applications

INTERNET & CLOUD

Image Classification
Speech Recognition
Language Translation
Language Processing
Sentiment Analysis
Recommendation

DEEP LEARNING EVERYWHERE

MEDICINE & BIOLOGY MEDIA & ENTERTAINMENT SECURITY & DEFENSE

Cancer Cell Detection Video Captioni Face Detection
Diabetic Grading VideoaS%a?g:ng Video Surveillance
Drug Discovery Real Time Translation Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection
Lane Tracking
Recognize Traffic Sign

Neural Network Architectures

Feed-Forward Networks

* Neurons from each layer
connect to neurons from
next layer

Deep Feed Forward (DFF)

9,
/AN
VAN
rf.&i o “f
Xogiiie

\‘f\

Convolutional Networks

* Includes convolution layer
for feature reduction

* Learns hierarchical
representations

| X XX X |

Recurrent Networks

* Keep hidden state

* Have cyclesin
computational graph

Feed-Forward Neural Networks

Output units Training labels

Hidden units Learned
during training

R () Inputunits Training data
Layered feed-forward network

Neural networks are made up of nodes or units,
connected by links

Each link has an associated weight and activation level

Each node has an input function (typically summing over
weighted inputs), an activation function, and an output

Feed-Forward Neural Network

Training example
x = (X1, %2,%3)

(Input Layer) (Hidden Layer) (Output Layer)

Layer O Layer 1 Layer 2

No cycles O = (b[l], wlil pl2l w2l

Vectorization

::[11] = H"'l[l]T.r' + b[ll] and u[11] = g[:gll)
::.[11] = H'TL[I]TJ' + b_[ll] and ”[1] = q[::[ll])
— - - T - _ _
:[11] - ”—[1]]] bgl]
' —w _ bl
- — A9 + .
: ; T3 ;

L1 ot | =~ b
x‘_.i_.« — ir 4 re R e—
»[1] e R4x1 " 1] c R4*3 i’}[l] e R¥x1

711 = wltly & pla alll = g(z!1h

Vectorization

Output layer

[2

. T .
:F = I‘["l[”] alll + b[lz] and a; = g(

el

28 =Wl gl 4 P2l and a? = q(22)
1x1 Ix4 4x1 1x1 T 1e

10

Training Neural Networks

Pick a network architecture (connectivity pattern between nodes)

* #input units = # of features in dataset

* #output units = # classes

Reasonable default: 1 hidden layer

* orif >1 hidden layer, have same # hidden units in
every layer (usually the more the better)

11

Training Neural Networks

Input training dataset D
— Number of features: d
— Labels from K classes

First layer has d+1 units (one per feature and
bias)
Output layer has K units

Training procedure determines parameters that
optimize loss function

— Backpropagation

— Learn optimal Wl plil at layer i

Testing done by forward propagation

Forward Propagation

* The input neurons first receive the
data features of the object. After
processing the data, they send their
output to the first hidden layer.

* The hidden layer processes this output
and sends the results to the next
hidden layer.

&
XU/
«(

Y;
o

X
X
’«,
@

* This continues until the data reaches

I’M
N9
output layer
the final output layer, where the . ‘ .
output value determines the object's input layer

classification. hidden layer 1 hidden layer 2

)

* This entire process is known as o
Forward Propagation, or Forward prop. X » Prediction

13

Logistic Unit: A simple NN

“bias unit” Lo go
/PH\ :I']_)
fil?[)}\;rgzl X = (0 — 1
\\.__/ \\\ IQ 92

‘49 T3 63
91 hN))))

b

N

(2235 [holx) = 9 (07%) = gw™x +b)

03 1
@/. — | n €—9TX

B 1
14 ez

Sigmoid (logistic) activation function: ¢(2)

No hidden layers

14

Activation Functions

Sigmoid

o(r) = 1+é—w

tanh
tanh

RelLU
max (0, x)

r
S

Positive
Classification

Regression

Positive
Classification

15

Why Non-Linear Activations?

* Assume gis linear: g(z) = Uz
— At layer 1: M = wit Ty 4 plH]

vzt = ywl'Tx + ypt!

|
Q|_|
=

|l

aQ
~—

N
=
~

|l

~d? =g (Z[Z]? = Uz® = uwTal1l 4 b2 =
uwHT gwtt Ty + yw!#Typltl+ yp?!
e Last layer
— QOutput is linear in input!
— Then NN will only learn linear functions

Multi-Layer Perceptron (MLP)

The Multi-Layer-Perceptron was first introduced by M. Minsky and S. Papert

in 1969
Type: nput values
Feedforward l l l
Neuron layers: X 7\ 5 bt
1 input layer Watolt ot 4
1 or more hidden layers
1 output layer ‘) hidden layer
Learning Method: / weight matrix 2
Supervised 4 ¥ > - »

-Neurons from one layer are fully connected to
neurons in next layer

17

Multiple Output Units: One-vs-Rest

We want:

he(x) =~

when pede-stri:;m

O O = O

when car

when motorcycle

D

0

he(x) ~ |
b 1 —d

when truck

18

Multiple Output Units: One-vs-Rest

We want:

he(x) ~

when pedestri.::m

0
0

K

c R®
[0] [0]
1 : 0
he(x) ~ 0 he(x) ~ |
L 0] L 0]
when car when motorcycle

[0]
0
he(x)~ 1|
i 1
when truck

* Given {(x,,Y), (X0,¥s), ...

, (%, 1,) }

* Must convert labels to 1-of- K representation

—eg., yi=

0

0
1
0

when motorcycle, yi=

0
1
0

0 |

when car, etc.

19

Neural Network Classification

Given:
{(Xp%): (XQ:%): (X-n?yn)}

L
s € N7 contains # nodes at each layer

— s, = d (#features)

Binary classification Multi-class classification (K classes)
rewt i (i 1}
0 0 0 1

pedestrian car motorcycle truck

1 output unit (s ;= 1) K output units (s, ,= K)
L1~

Sigmoid Softmax

Softmax classifier

- —P p (y=0
2.0 0.7 "v=0
P
X = ' —p p(y=1) Y
1.0 0.2
B —> ply=2)
0 - | 0.1
Scores (Logits) Probabilities
e’i
o(z); = = forj=1, ..., K
D k1 €%

* Predict the class with highest probability
* Generalization of sigmoid/logistic regression to multi-class

21

Multi-class classification

—> Ply=0| x)
—> Ply=1| x)

—> Ply=2|x)

Softmax

22

Representing Boolean Functions

Logistic / Sig_moid Function

Simple example: AND
ek g9(2)
r1, 29 € {0,1}
y = 1x1 AND x5 o5
o 4 2 0 2 4
. r T hg(x)
he(x) = g(-30 + 202 + 20z L . .
10 (%) = g(-30 + 202, +~ 20z > o 30 =0
0 1 g(-10) = 0
1 0 g(-10) = 0
1 1 9(10) = 1

23

Representing Boolean Functions

O
-30
e +20 —> hg(x)
+20

e +20 —>hg(x)
+20

—> h19(X)

24

Combining Representations

(NOT ;) AND (NOT)

XOR is non-linear!

Which models are deep?

@ 2-layer models are not deep (even if

you train the first layer) G(X: U‘f) = Z a’jK(Xja X)
» Because there is no feature '
hierarchy
@ Neural nets with 1 hidden layer are not &3 ;
deep) /
K(X7,X) /)

@l SVMs and Kernel methods are not deep /S
» Layerl: kernels; layer2: linear
» The first layer is “trained” in
with the simplest unsupervised
method ever devised: using

the samples as templates for
the kernel functions.

Classification trees are not deep

» No hierarchy of features. All
decisions are made in the input
space

26

Outline

* Feed-Forward architectures
— Non-linear activations
— Multi-Layer Perceptron
— Multi-class classification (softmax unit)
— Representing Boolean functions

e Convolutional Neural Networks

— Convolution layer

— Max pooling layer

Convolutional Neural Networks

First strong results °

pre- tramlng
Acoustic Modeling using Deep Belief Networks -
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010 B I
Context-Dependent Pre-trained Deep Neural Networks § §
for Large Vocabulary Speech Recognition §§ [|
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012 o | 1

N T
S

Imagenet classification with deep convolutional | peciogan
neural networks s
Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012, Reproduced with permission.

28

Convolutional Nets

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

29

Convolutional Nets

Photo by Lane Mcintosh. Copyright C5231n 2017.

self-driving cars

- Object recognition

- Steering angle prediction

- Assist drivers in making
decisions

No errors

A white teddy bear sitting in A man in a baseball
the grass uniform throwing a ball

A cat sitting on a
suitcase on the floor

A man riding a wave on
top of a surfboard

- Image captioning

30

Convolutional Nets

e Particular type of Feed-Forward Neural Nets
— Invented by [LeCun 89]

* Applicable to data with natural grid topology
— Time series
— Images

* Use convolutions on at least one layer
— Convolution is a linear operation

— Also use pooling operation

— Used for dimensionality reduction and learning
hierarchical feature representations

Convolutional Nets

RELU RELU

>
=T
i
o
|
=
L
o

RELU RELU

CONV

CONV

—

CONV

—

CONV

R

—

CONV

— e

CONV
}

e

—

AYANSENRAS

b TRV TR T
NNENSOEARA
1Y S T 1LY Y O
WENELNENAN
NAEEONENAN
AR ORI PN
) O A I YR LT
() O S L

P or

32

Convolutional Nets

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

/ .
RelLU
e.q.6
5x5x3
L 32 filters

CONV,

A

V.

|

28

CONYV,

RelLU
e.g. 10
5x5x6
filters

A

.

24

CONV,

RelLU

33

Convolution Layer

32x32x3 image -> preserve spatial structure

7

height
32 el 5x5x3 filter
L7
I| Convolve the filter with the image
i.e. “slide over the image spatially,
32 width computing dot products”

3 depth

* Depth of filter always depth of input

=\

W |

N\

Convolution Layer

__— 32x32x3 image
5x5x3 filter w

V
——0

"™~ 1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

wTa:+b

=\

activation map

___— 32x32x3 image
5x5x3 filter

V
——0 |

convolve (slide) over all

w |

N\

spatial locations

28

35

N

w |

N\

N

w |

Convolution Layer

__— 32x32x3 image activation maps
~_ 5x5x3filter %
>O convolve (slide) over all

spatial locations
/ 28

1

28

Second, green filter

=\

activation maps

Convolution Layer

28

6 filters

28

36

Convolutions

A closer look at spatial dimensions:

7

7X7 input (spatially)

assume 3x3 filter

=> 5x5 output

37

Convolutions with stride

7X7 input (spatially)
assume 3x3 filter
applied with stride 2

7 7 7

=> 3x3 output!

38

Convolutions with stride

7
7X7 input (spatially) _
assume 3x3 filter doesn’t fit!
applied with stride 3? cannot apply 3x3 filter on
7 7x7 input with stride 3.
N
Output size:
= (N - F) / stride + 1
N eg.N=7 F=3:
F stride 1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=233:\

39

Padding

In practice: Common to zero pad the border

0

0

0

0

0

o | o | o | o | o

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F)/stride + 1

40

Examples
Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

N
<

Output volume size: ?

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 pérams (+1 for bias)
=>76*10 =760

41

Summary: Convolutional Layer

Summary. To summarize, the Conv Layer:

e Accepts a volume of size W; x Hy; x D,
* Requires four hyperparameters:
o Number of filters K,
o their spatial extent F,
o the stride S,
o the amount of zero padding P
* Produces a volume of size Wy x Hy x D, where
o Wo=(W, —F+2P)/S+1
o Hy = (H; — F +2P)/S + 1 (ie. width and height are computed equally by symmetry)
o D2 =K
« With parameter sharing, it introduces F - F - D; weights per filter, for a total of (F' - F' - D) - K weights
and K biases.
« |n the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

42

Acknowledgements

* Slides made using resources from:
— Yann LeCun
— Andrew Ng
— Eric Eaton
— David Sontag
— Andrew Moore

* Thanks!

