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Review

SVMs find optimal linear separator

The kernel trick makes SVMs learn non-linear
decision surfaces

Strength of SVMs:

— Good theoretical and empirical performance
— Supports many types of kernels

Disadvantages of SVMs:

— “Slow” to train/predict for huge data sets (but relatively fast!)
— Need to choose the kernel (and tune its parameters)



Outline

Naive Bayes classifier
— Density Estimation

Application
— Document classification

Review of supervised learning methods
Metrics for evaluating classifiers



Prior and Joint Probabilities

* Prior probability: degree of belief without any other

evidence

* Joint probability: matrix of combined probabilities of

a set of variables

Russell & Norvig’s Alarm Domain: (boolean Rvs)

* A world has a specific instantiation of variables:

(alarm A burglary A —earthquake)
* The joint probability is given by:

P(Alarm, Burglary) =

alarm —alarm
burglary 0.09 0.01
—burglary |0.1 0.8

Prior probability
of burglary:

P(Burglary) = 0.1

by marginalization
over Alarm




Density Estimation

* Qur joint distribution learner is an example of
something called Density Estimation

* A Density Estimator learns a mapping from a set of
attributes to a probability

Input
Attributes

Density
Estimator

» Probability

YYYYY




Example — Learning Joint Probability
Distribution

This Joint PD was obtained by learning from three
attributes in the UCI “Adult” Census Database [Kohavi 1995]

gender hours_worked wealth
Female v0:40.5- poor 0.253122 |GGG
rich  0.0245895 |
v1:40.5+ poor 0.0421768 [}
rich  0.0116293 |

Male  v0:40.5- poor 0.331313 |GG
rich  0.0971295 | N
v1:40.5+ poor 0.134106 |G
rich  0.105933 [N




Pros and Cons of Density Estimators

* Pros

— Density Estimators can learn distribution of
training data

— Can compute probability for a record
— Can do inference (predict likelihood of record)
* Cons

— Can overfit to the training data and not generalize
to test data

— Curse of dimensionality

Naive Bayes classifier fixes these cons!



Bayes’ Rule

P(B | A) x P(A)

P(A|B) = B(E)

* Exactly the process we just used

* The most important formula in
probabilistic machine learning

(Super Easy) Derivation:
P(AAB)=P(A| B) x P(B)
P(BAA) =P(B|A) x P(A)

these are the same

Just set seltlE ... Bayes, Thomas (1763) An es;ato‘wards

P(A | B) X P(B) — P(B | A) X P(A) solving a problem in the doctrine of
chances. Philosophical Transactions of
an d SOIVe s the Royal Society of London, 53:370-418




Bayes’ Rule

* Allows us to reason from evidence to hypotheses

* Another way of thinking about Bayes’ rule:

P(evidence | hypothesis) x P(hypothesis)
P(evidence)

P(hypothesis | evidence) =

In the flu example:
P(headache) = 1/10 P(flu) = 1/40
P(headache | flu) =1/2
Given evidence of headache, what is P(flu | headache) ?

Solve via Bayes rule!




LDA

e Classify to one of k classes

* Logistic regression computes directly
—PlY = 1|X = x] Discriminative model
— Assume sigmoid function

* LDA uses Bayes Theorem to estimate it

P[X = x|Y = k|p[y=k]

—PlY =k|X =x] = ey~

— Let ;. = P|Y = k] be the prior probability of class
kand fi,(x) = P[X = x|Y = k]

Generative model



LDA

Pr(Y — kX — o) — —kSR(@)
( ' ] S mfi()

Assume f; (x) is Gaussian!
Unidimensional case (d=1)

1 1 E)
) = exp | ———=(x — ug
f.‘i:( ) mﬂ‘k p( 2{'?%:( / }

| Tk Elw exp (— 5oz (z — px)?)
pr(T) = —5 1 :
—1 Tl = EW exp (—5z (z — )? )

Assumption: g; = ...0, = O
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Classification Setting

* Recall Baye’s Rule:

P(evidence | hypothesis) x P(hypothesis)

P(hypothesis | evidence) = Plevidence)
evidence

* Equivalently, we can write:

P[Y = k] P[X = x|V = k]

PI[Y = k|X =x] = PIX = 1]

where X is a random variable representing the evidence and
Y'is a random variable for the label

12



Naive Bayes Classifier

Idea: Use the training data to estimate
P(X|Y) and P(Y) .
Then, use Bayes rule to infer P(Y|X,w) for new data

Easy to estimate
from data Impractical, but necessary

PIY = k[P[X, = x; A~ AXy= x4]V = K]
P[X1 = X1 N /\Xd: xd]

PIY =k|X=x] =

Unnecessary, as it turns out

* Recall that estimating the joint probability distribution
P(X1,Xo,....X4|Y) isnot practical



Naive Bayes Classifier

Problem: estimating the joint PD or CPD isn’t practical

— Severely overfits, as we saw before

However, if we make the assumption that the attributes
are independent given the class label, estimation is easy!

* |n other words, we assume all attributes are
conditionally independent given Y

* Often this assumption is violated in practice, but more
on that later...

14



Training Naive Bayes

Estimate P(X; | Y) and P(Y) directly from the training
data by counting!

Sky Temp Humid Wind Water | Forecast | Play?

sunny warm normal | strong warm same yes

sunny warm high strong warm same yes

rainy cold high strong warm change no

sunny warm high strong cool change yes
P(play) =7 P(=play) =7

P(Sky = sunny | play) =

P(Humid = high | play) = 7

P(

P(Humid = high | =pla

S

ky = sunny | =play) = 7

}*) —




Training Naive Bayes

Estimate P(X, | Y) and P(Y) directly from the training
data by counting!

Sky Temp Humid Wind Water | Forecast
sunny warm normal | strong warm same
sunny warm high strong warm same
rainy cold high strong warm change
sunny warm high strong cool change
P(play) = 3/4 P(-play) = 1/4
P(Sky = sunny | play) = P(Sky = sunny | =play) = 7

P(Humid = high | play)

P(Humid = high | =play) =

16



Training Naive Bayes

Estimate P(X; | Y) and P(Y) directly from the training
data by counting!

Sk Temp Humid Wind Water | Forecast Play?

sunny yes
sunn es

rain cold strong warm change

P(play) = 3/4 P(=play) = 1/4
P(Sky = sunny | play) = 1 P(Sky = sunny | =play) = 7

P(Humid = high | play) =7 P(Humid = high | =play) =7
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Training Naive Bayes

Estimate P(X; |Y) and P(Y) directly from the training
data by counting!

Sky Temp Humid Wind Water | Forecast| Play?
sunny warm normal strong warm same yes
warm high strong warm same es

sunny warm high strong cool change yes
P(play) = 3/4 P(-play) = 1/4
P(Sky = sunny | play) = 1 P(Sky = sunny | =play) = 0

P(Humid = high | play) =7 P(Humid = high | =play) = 7
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Training Naive Bayes

Estimate P(X; | Y) and P(Y) directly from the training
data by counting!

normal

h|h

_
7z

P(play) = 3/4 P(=play) = 1/4
P(Sky = sunny | play) = 1 P(Sky = sunny | =play) = 0
P(Humid = high | play) = 2/3 P(Humid = high | =play) =7

19



Training Naive Bayes

Estimate P(X; | Y) and P(Y) directly from the training
data by counting!

Sky Temp Humid Wind Water | Forecast| Play?
sunny warm normal | strong warm same yes
sunn warm high strong warm same es
sunny warm high strong cool change yes

P(play) = 3/4 P(-play) = 1/4
P(Sky = sunny | play) = 1 P(Sky = sunny | =play) = 0

P(Humid = high | play) = 2/3 P(Humid = high | =play) = 1

20



Laplace Smoothing

* Notice that some probabilities estimated by counting
might be zero

— Possible overfitting!

* Fix by using Laplace smoothing:
— Adds 1 to each count

.+ 1
P(X;=v|Y =k)= o

Z Cor + [values( X))

v’ €values(X ;)
where

— ¢, is the count of training instances with a value of v for
attribute jand class label k

— |values(X))| is the number of values X, can take on

21



Using the Naive Bayes Classifier

* Now, we have 7
P[Y=k]P[X1 =X1/\"'/\Xd= xd|Y=k]
P[X]_ = X1 A "'/\Xd= xd]

P[Y = k|X = x]

This is constant for a given instance,
and so irrelevant to our prediction



Naive Bayes Classifier

 For each class label k
1. Estimate prior P|Y = k] from the data
2. For each value v of attribute Xj

* Estimate P[X; = v|Y = k]

* Classify a new point via:
d

h(x) =argmax logP(Y = k )+ Zlog P(X,=x;|Y=Fk)

Yk j:l



Computing Probabilities

* NB classifier gives predictions, not probabilities, because
we ignore P(X) (the denominator in Bayes rule)

* Can produce probabilities by:

— For each possible class label 7,., compute

o

d
PY=k|X=x)=PY=k)]]PX;=20,|V=k)
\ ' J i1
This is the numerator of Bayes rule, and is
therefore off the true probability by a factor
of a that makes probabilities sum to 1

1
classes 1
T P(Y = k| X =x)

— aisgiven by & =

— Class probability is given by
PY=Fk | X=x)=aP(Y = k| X =x)

24



Nalve Bayes Summary

Advantages:

* Fast to train (single scan through data)
* Fast to classify

* Not sensitive to irrelevant features

* Handles real and discrete data

* Handles streaming data well

Disadvantages:

* Assumes independence of features



Document Classification

PROBLEM SETTING
Given:

* Representation of a document
* Setofclasses1,..., K

F =TT -
| F - - * T ——
(A (Programming) (HCI).
Classes:
ML Plannind |Semant'|'c5 Garb.CoII.I Multimedia
Training learning planning programming garbage
Data: intelligence temporal semantics collection
algorithm reasoning language memory
reinforcement plan proof... optimization

network... language... region...



Test
Data:

Classes:

Training
Data:

Document Classification

e

i

ML

learning
intelligence

planning
language
proof
intelligence”

Ny

planning
temporal

algorithm

reasoning

reinforcement plan

network

laneliace

PROBLEM SETTING
Given:
* Representation of a document
* Setof classes 1,..., K

Determine:

* C(Class to which document d belongs

T

T (HCI)

;
7

(Prqgrarhnjing)

|Semanﬁcs Garb.CoII.I Multimedia

programming garbage

semantics collection

language memory

proof... optimization
region .

a
~
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Text Classification: Examples

Classify news stories as World, US, Business, SciTech, Sports, etc.
Add terms to Medline abstracts (e.g. “Conscious Sedation” [E03.250])
Classify business names by industry

Classify student essays as A/B/C/D/F

Classify email as Spam/Other

Classify email to tech staff as Mac/Windows/ ...

Classify pdf files as ResearchPaper/Other

Determine authorship of documents

Classify movie reviews as Favorable/Unfavorable/Neutral
Classify technical papers as Interesting/Uninteresting

Classify jokes as Funny/NotFunny

Classify websites of companies by Standard Industrial
Classification (SIC) code

28



Bag of Words Representation

What is the M representation for documents?

simplest, yet useful

ldea: Treat each document as a
sequence of words

* Assume that word positions are
generated independently

Dictionary: set of all possible words

* Compute over set of documents

* Use Webster’s dictionary, etc.

29



Bag of Words Representation

Represent document d as a vector of word counts x

* z;represents the count of word jin the document
— X is sparse (few non-zero entries)

number of times
“abbey” occurred

X

aardvark |©
abacus |©
abandon |~
abase o
abate |©
aberration o
abbey |&
abbot |©
Z00 |©

30



Another View of Naive Bayes

* Let the model parameters for class ¢ be given by:

9(1 — {Qc]_w, 90,2'} SRR QClDl}

size of dictionary D

-0, = P(word joccurs in a document from ¢)

— Also have that Z 0., =1
J

* The likelihood of a document d characterized by x is

Pdﬂ—(jxj)!Hg zj
( | C) T H Zl"" ( Cj)
I
— This is just the multinomial distribution, a generalization of
. . . . . n . \—k
the binomial distribution (;,)PLU — )

31



Another View of Naive Bayes

* The likelihood of a document d characterized by x is

T 10

J

P(d|6.) =

e Use Bayes rule: introduce class priors

| D| | D
log P(0. | d) o log (P(Qp) H(Q(_,j)l?j) — log P(6,) + Z z;log 0
j=1

j=1



Document Classification with Naive
Baves

. Compute dictionary D over training set (if not given)
. Represent training documents as bags of words over [
. Estimate class priors via counting

A W N

. " Cpege A ]\/ch + 1
. Estimate conditional probabilities as ch — N - |D|

— N_;is number of times word j occurs in documents from class ¢

— N_is total number of words in all documents from class ¢

* Naive Bayes model for new documents (represented in D) is:

h(d) = arg max (10g P(c) + Z T zi}cj>
" J

C

where w.; = logf,;

33



Review Naive Bayes

Density Estimators can estimate joint probability
distribution from data

Risk of overfitting and curse of dimensionality

Naive Bayes assumes that features are
independent given labels

— Reduces the complexity of density estimation

— Even though the assumption is not always true, Naive
Bayes works well in practice

Applications: text classification with bag-of-words
representation

— Naive Bayes becomes a linear classifier

Generative model



Traditional learning

Linear classifiers
— Logistic regression, LDA, perceptrons

Decision trees

Ensembles

— Random Forests
— AdaBoost

SVM
— Linear SVM
— Kernels

Naive Bayes



Confusion Matrix

Given a dataset of PP positive instances and /N negative instances:

Predicted Class
Yes No

Yes TP FN

FP TN

=
O

Actual Class



Accuracy and Error

Given a dataset of P’ positive instances and /N negative instances:

Predicted Class Predicted Class
Yes No Yes No
A N 7
o
O Yes TP FN 8 Yes TP
© ©
Z No | [FPN_TN 2 No N
)
< <
TP +TN | TP +1TN
accuracy = error —= —
B FP+ FN

P+ N



Precision & Recall

Precision Recall

* the fraction of positive * fraction of positive
predictions that are correct instances that are identified

* P(is pos|predicted pos) * P(predicted pos|is pos)
o TP | TP

precision = —— P recall = TP EN

* You can get high recall (but low precision) by only predicting positive
* Recall is a non-decreasing function of the # positive predictions

* Typically, precision decreases as either the number of positive
predictions or recall increases

* Precision & recall are widely used in information retrieval

38



F-Score

* Combined measure of precision/recall tradeoff

precision X recall

Fp =2 x —
precision + recall
— This is the harmonic mean of precision and recall
— In the F, measure, precision and recall are weighted evenly

— Can also have biased weightings that emphasize either
precision or recall more (F, =2 x recall; F,. = 2 x precision)

* Limitations:
— F-measure can exaggerate performance if balance
between precision and recall is incorrect for application

* Don’t typically know balance ahead of time

39



A Word of Caution

* Consider binary classifiers A, B, C:

Predictions

A . B : C .

1 0 1 0 1 0

09 01|08 0 [078 O
0 O 0 |01 0.1]012 0.1

Clearly A is useless, since it always predicts 1
B is slightly better than C

— less probability mass wasted on the off-diagonals

But, here are the performance metrics:

Metric A B C
Accuracy | 0.9 0.9 0.88
Precision 0.9 1.0 1.0

Recall 1.0 0.888 0.8667

F-score 0.947 0.941 0.9286
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Receiver Operating Characteristic (ROC)

ROC curves assess predictive behavior independent of
error costs or class distributions

* Originated from signal detection theory

» Common in medical diagnosis, now used for ML

Plots TP rate vs FP Rate
TP rate = TP/P
FP rate = FP/

Predicted Class
Yes No

ves (7)o
@ TN

=
O

Actual Class

True positive rate

Example ROC Plot

1.0 —
0.75 /
0os{ / .
' — Leamer L1
o2~/ .~ .. T Learner 1.2
----- Learner .3
i e Random
0+ : . ,
0.25 0.5 0.75 1.0

False positive rate
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Performance Depends on Threshold

Predict positive if P(y = 1 | x) >

6, otherwise negative

* Number of TPs and FPs depend on threshold &
* As we vary f, we get different (TPR, FPR) points

Example ROC Plot

].D ——.--f"'.""
m - '-” B .".-Fl'-
= 054 / 7
Z / g
- [/ —— Learner L1
oasd/ o Learner 1.2
[0 e Learner L3
e Random
0+ | : ,
0 0.25 0.5 0.75

False positive rate

1.0
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ROC Example

iy plyi=1]x) hix; | #=0) h(x; | # =0.5) hix; |0 =1)
1 1 0.9 1 1 0
2 1 0.8 1 1 0
3 1 0.7 1 1 0
4 1 0.6 1 1 0
5 1 0.5 1 1 0
6 0 0.4 1 0 0
7 0 0.3 1 0 0
8 0 0.2 1 0 0
9 0 0.1 1 0 0

TPR=5/5=1 IPR=5/5=1 IPR=0/5=0
| p=———————=9 FPR=4/4=1 FPR=0/4=0 FPR=0/4=0

TPR

FPR



ROC Example

iy plyi =11 %x5) h(xi | 0§ =0) h(xi | # =0.5) hixi|0=1)

1 1 0.9 1 1 ()

2 1 0.8 1 1 ()

3 1 0.7 1 1 ()

4 1 0.6 1 1 ()

5 1 0.2 1 0 0

6 0 0.6 1 1 0

7 0 0.3 1 0 ()

8 0 0.2 1 0 ()

9 0 0.1 1 0 ()

TPR—5/5—1 1PR—14/5—08 1TPR=0/5=0

1 FPR—4/4—=1 FPR—=1/4=025 FPR=0/4=0

TPR

FPR



ROC Curve

1.0

0.75 1

True positive rate

“Ideal”

learner

) Random model is
 —  always diagonal
- line in ROC space

— Learner L1

------- Learner 1.2
Learner L3

......... Random

05 075 1.0
False positive rate
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ROC Curve

1.0
L
s
o 0.75-
2
Z
(@B 05 _
3
— — Learner L1
024/ -~ . 4 T Learner .2
Learner L.3
N T

L3 dominates L2 L2 dominates L3
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ROC Curve

L1 always dominates ‘

1.07— L2 andl L3 \

. ,
E
o 0.751
2
2
= 05
L
C |
— — Learner L1

025/ - [earner .2

Learner .3
2 —— Random
0 = | T T
0 0.25 0.5 0.75 1.0

False positive rate



Area Under the ROC Curve

Can take area under the ROC curve to summarize
performance as a single number

— Be cautious when you see only AUC reported without a
ROC curve; AUC can hide performance issues

1 A

os '\
08 &
perfect classification -

07

06

0.5

TPR

random classificatian

AUC (AUC=0.5) Same AUC, very different
performance

0.4

0.3

1] 0.1 oz 0.3 [ los 06 07 08 [T [

FPR
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Comparing Supervised Learning

Comparing Supervised Learning Algorithms : Table

Easy to
Results explain Average
interpretable algorithm predictive Prediction
Algorithm Problem Type by you? to others? accuracy Training speed speed
Depends on
KNN Either Yes Yes Lower Fast n
Linear regression |Regression Yes Yes Lower Fast Fast
Logistic regression | Classification Somewhat Somewhat Lower Fast Fast
Fast (excluding
feature
Naive Bayes Classification Somewhat Somewhat Lower extraction) Fast
Decision trees Either Somewhat Somewhat Lower Fast Fast
Random Forests Either A little No Higher Slow Moderate
AdaBoost Either A little No Higher Slow Fast
Neural networks Either No No Higher Slow Fast
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