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Logistics

e HW2 is due on Friday, Oct. 19 at midnight

* Project proposal is due on Oct 22 (1 page on Gradescope)
— Project Title

— Problem Description
* What is the machine learning problem you are trying to solve?

— Dataset

* Link to data, brief description, number of records, feature
dimensionality

* At least 10,000 records
— Approach

Data exploration
* Normalization if any
* Feature selection if any
* Machine learning models (several) you will try for your problem
* Methodology for splitting into training and testing, cross validation
* Language and packages you plan to use
* Metrics, how you will evaluate your models



Review

* Ensemble learning are powerful learning
methods

* Bagging uses bootstrapping (with replacement),
trains T models, and averages their prediction

— Random forests vary training data and feature set at
each split
* Boosting is an ensemble of weak learners that
emphasizes mis-predicted examples

— AdaBoost has great theoretical and experimental
performance

— Can be used with linear models or simple decision
trees



Outline

* Quick review on ensemble learning
e SVM

— Linearly separable data
e Separating hyperplanes
* Maximum margin classifier

— Non-separable data
e Support vector classifier

e Non-linear decision boundaries
— Kernels and Radial SVM



Ensemble Learning

Consider a set of classifiers 4, ..., hy

Idea: construct a classifier H(x) that combines the
individual decisions of 4, ..., h
* e.g., could have the member classifiers vote, or

* e.g., could use different members for different regions of the
instance space

Successful ensembles require diversity Bagging
* Classifiers should make different mistakes e Boosting
* (Can have different types of base learners



Combining Classifiers: Averaging

h,
h2

X o g —> H(x)
hy

* Final hypothesis is a simple vote of the members




Combining Classifiers: Weighted
Averaging

* Coefficients of individual members are trained using
a validation set



Bagging

Original
D Training data

1

Step 1: & l l J'
Create Multiple D, D, @*"*-* D, , D,
Data Sets
Step 2:
Classifiers ' 11 f N y i'1 N J,t
Step 3:
Combine Cl
Classifiers

Majority Votes

Bootstrap
samples

RF: subset of
features at
each split



Evaluating Bagging

* Sampling with replacement
Training Data

Data ID e
Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

* Sample each training point with probability 1/n
e Out-Of-Bag (OOB) observation: point not in sample
* For each point: prob (1-1/n)"
 About 1/3 of data
* OOB error: error on OOB samples
* OOB average error
 Compute across all models in Ensemble
e Use instead of Cross-Validation error



AdaBoost

* A meta-learning algorithm with great theoretical and
empirical performance

* Turns a base learner (i.e., a “weak hypothesis”) into a
high performance classifier

* Creates an ensemble of weak hypotheses by
repeatedly emphasizing mispredicted instances

Adaptive Boosting
Freund and Schapire 1997
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AdaBoost

INPUT: training data X,y = {(x®,y®)},i=1..n

the number of iterations

fort=1..... T

€t = E Wt,i

'!::yi?fht {Xij

Choose 3; = % [n (l:t)

Update all instance weights:

wiy1i = we; exp(—ByPhe(xW)),i= 1.

Wt41,i :
Wiyl = —n 1 Vi =1
2 =1 Wil

. end for
. Return the hypothesis

T
H(x) = sign (Z,{S’tht(x))
=1

T

. Initialize a vector of n uniform weights w; = [—

Normalize w1 to be a distribution:

.....

-----

-----

Train model h; on X, y with instance weights wy
Compute the weighted training error rate of hy:
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Base Learner Requirements

 AdaBoost works best with “weak” learners
— Should not be complex
— Typically high bias classifiers

— Works even when weak learner has an error rate just
slightly under 0.5 (i.e., just slightly better than random)

* Can prove training error goes to 0 in O(log n) iterations

* Examples:

— Decision stumps (1 level decision trees)
— Depth-limited decision trees

— Linear classifiers
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Outline

* Quick review on ensemble learning
e SVM

— Linearly separable data
e Separating hyperplanes

* Maximum margin classifier

— Non-separable data

e Support vector classifier

e Non-linear decision boundaries
— Kernels and Radial SVM



Hyperplane

* Line (2-dimensions): 8y + 6,x1 + 6,x5, =0
* Hyperplane (d-dimensions): 8y + 61x1 + - 04x4 = 0

FIGURE 9.1. The hyperplane 1 + 2X1 4+ 3X2 =0 is shoun. The blue region is
the set of points for which 1 +2X, +3X: > 0, and the purple region is the set of
points for which 1 +2X, + 3X; < 0.
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Notation

e Training data xD, ..., x(™ with x(® =

(2, ... xf;'))T

* Labels are from 2 classes: y € {—1,1}
* Goal:

— Build a model to classify training data

— Test it on new data x4, ..., X,, to predict labels
! !/
Y1, YVn



Linear separability

) ® 9 L
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Separating hyperplane

0, + Hlx(l) n ,,,de() >0 ify® =1 For aII’Fraini_ng
data x(‘),y(l)

HO + Hlx(l) 4 de() <0 lfy(l) - —1 I E {1, ...,Tl}

Perfect separation between the 2 classes

17



Separating hyperplane

y(i)(HO + Hlxii) + .- dec(zi)) >0

For all training
data x®,y®),
i €{1,..,n}
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From separating hyperplane to

classifier

Training data x@, ..., x™ with x® = (xii),

Labels are from 2 classes: y) € {—1,1}
Let 84, ..., 84 such that:

yD (0, + Hlei) + e deg)) >0

Classifier
f(z) =sign(0y + 0,z + -+ 0424) = sign(0'z)
Test on new point x’

— If f(x) > 0 predicty’=1
— Otherwise predicty’'= —1

(1)

e X g

"



Separating hyperplane

* |f a separating hyperplane exists, there are
infinitely many
 Which one should we choose?



Intuition

Which of these linear classifiers is the best?
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Classifier Margin 6

° C(Class 1 X " f ~yest
Class -1

f(x, 8) =sign(6" x)

Define the margin of

a linear classifier as

the width that the

boundary could be

° o increased by before
o hitting a datapoint.
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Maximum Margin

Class 1
Class -1

X

6
l

f - yest

f(x, 8) =sign(6" x)

The maximum margin
linear classifier is the
linear classifier with
the maximum margin!
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Classifier margin

Support vectors are “closest” to hyperplane
If support vectors change, classifier changes

25



Finding the maximum margin classifier

| | T
» Training data x™@), ..., x(™ with x(® = (xil)’ ""x‘(ll))

* Labels are from 2 classes: y; € {—1,1}

max M
y () (60 + Hlxii) + - dec(li)) > M Vi
lol], = 1

|

N , Each point is on the
Normalization constraint

right side of hyper-
plane at distance > M



Equivalent formulation

« Min |16]|’

¢ YO (6 + 0,50 + - 0,3P) = 1 vi

* Can be solved with quadratic optimization
techniques

* |t's easier to optimize the dual problem

 Maximum margin classifier — given by solution
@ to this optimization problem

27



Outline

* Quick review on ensemble learning
e SVM

— Linearly separable data
e Separating hyperplanes
* Maximum margin classifier

— Non-separable data

e Support vector classifier

e Non-linear decision boundaries
— Kernels and Radial SVM



Linear separability

) ® 9 L
linearly o ®° TN
L]
separable ° .. A AAA 4
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2.0

Non-separable case

Ay

Optimization problem has no solution!
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Maximum margin is not always the

best!
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e QOverfits to training data
* Sensitive to small modification (high variance)
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Support vector classifier

e Allow for small number of mistakes on training
data

e Obtain a more robust model

max M
yO (6 + 616" + - 04x) = M(1 - & )vi
16|, = 1 |
€; > OJZiEi —C Slack
|

l

Error Budget (Hyper-parameter)




max M

y® (60 + 0127 + - 04x{’) = M(1 - ;) Vi

EiZO

Correct side 2

of margin

161], = 1 |
EiZO;ZiEi:C — Error Slack
Budget
0< Ei<1

Violates margin
Correct label

€; > 1
Incorrect label
At most C data
points
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Error Budget and Margin

Larger C
Low variance

Smaller C
Over-fitting

Find best hyper-parameter C by cross-validation
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Equivalent formulation

Min [16]]” + C 3, €;

y @ (8 + 0127 + 0463 ) 21— € Vi
€; >0

Inner product of 2 vectors a = (a4, ..., ag) and
b= (by,..,bg)is<a,b>=);a;b;

Solution is Support Vector Classifier
- f(Z) — 90 +Ziai < Z,X(i) >

— Where a; # 0 only for support vectors (for all other
training points a; = 0)

— Linear SVM
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Properties

 Maximum margin classifier
— Classifier of maximum margin
— For linearly separable data

e Support vector classifier

— Allows some slack and sets a total error budget
(hyper-parameter)

— Final classifier on a point is a linear combination of
inner product of point with support vectors

— Efficient to evaluate
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Objective for Logistic Regression

n

7(0) = =Y [y logho(2) + (1 = ) log (1~ ho ()

i=1
* Cost of a single instance:

| N —log(he(x)) ify=1
cost (he(z),y) = { —log(1 — he(x)) ify=0

* Can re-write objective function as

T

J(0) = Z cost (hg(m(i))jy(":))

1=1
\ J
|

Cross-entropy loss
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Regularized Logistic Regression

n

J(0) ==Y |y log ho() + (1 - y) log (1 — ho(a)

1=1

* We can regularize logistic regression exactly as before:
d
']reg;ula.rized(e) — ](9) + A Z 6’?
j=1
= J(0) + M6p.ql5

L2 regularization
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Connection to Logistic Regression

+ J(6) = X}y max (0,1 _ y(i)f(x(i)))l_|_ AT, 67
|

Hinge loss F(x®) =0, + 6,2 + - 6,2

« J(8) =CY;-,max (0,1 — y(i)f(x(i))) +Z§-l=1 ]-2

C = regularization cost

Loss
4

—Gi —d -2 0 2

y<i>(90 + Hlxii) + - dec(ii))
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Resilience to outliers

e LDA is very sensitive to outliers

— Estimates mean and co-variance using all training
data

e SVM is resilient to outliers

— Decision hyper-plane mainly depends on support
vectors

* Logistic regression is also resilient to points far
from decision boundary
— Cross-entropy uses logs in the loss function
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