DS 4400

Machine Learning and Data Mining |

Alina Oprea
Associate Professor, CCIS
Northeastern University

October 11 2018



Review

* Decision trees are interpretable, non-linear
models
— Greedy algorithm to train Decision Trees (ID3)
— Works on categorical and numerical data

— Node splitting done by feature with max
Information Gain

* Ensemble learning
— Combines multiple ML models for better accuracy
— Reduces variance of individual model



Outline

* Ensemble learning
— How to combine classifiers
— Variance reduction
— Methods to create diversity

* Bagging method
— Random Forest model
— Variable importance

* Boosting method
— AdaBoost



Ensemble Learning

Consider a set of classifiers 4, ..., hy

Idea: construct a classifier H(x) that combines the
individual decisions of 4, ..., h
* e.g., could have the member classifiers vote, or

* e.g., could use different members for different regions of the
instance space

Successful ensembles require diversity
* C(lassifiers should make different mistakes
* (Can have different types of base learners



Combining Classifiers: Averaging

h,
h2

X o g —> H(x)
hy

* Final hypothesis is a simple vote of the members




Combining Classifiers: Weighted
Averaging

* Coefficients of individual members are trained using
a validation set



Reduce Variance

* Averaging reduces variance:

J— Varcx (when predictions
Var(X) = * are independent)

Average models to reduce model variance

One problem:
only one training set
where do multiple models come from?



How to Achieve Diversity

* Avoid overfitting
— Vary the training data

* Features are noisy

— Vary the set of features

Two main ensemble learning methods
* Bagging (e.g., Random Forests)
* Boosting (e.g., AdaBoost)



Bagging

Leo Breiman (1994)
Take repeated bootstrap samples from training set D

Bootstrap sampling: Given set D containing N training
examples, create D’ by drawing N examples at random

with replacement from D.

Bagging:

— Create k bootstrap samples D, ... D,.

— Train distinct classifier on each D..

— Classify new instance by majority vote / average.



General Idea

Original
D Training data

1

Step 1:
Create Multiple D, D, D, , D,
Data Sets
Step 2:
Build Multiple /¢ \ ol Yo
Classifiers N A o N

L

hl

\
-
\\'\
\'\.
.
hl 0
/"‘
/,/
y
p

Step 3. Y
Combine Cl
Classifiers

Majority Votes

10



Example of Bagging

* Sampling with replacement
Training Data

Data ID e
Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

* Sample each training point with probability 1/n
e Out-Of-Bag (OOB) observation: point not in sample
* For each point: prob (1-1/n)"
 About 1/3 of data
* OOB error: error on OOB samples
* OOB average error
 Compute across all models in Ensemble
e Use instead of Cross-Validation error



Bagging

* Can be applied to multiple classification
models

* Very successful for decision trees
— Decision trees have high variance

— Don’t prune the individual trees, but grow trees to
full extent

— Precision accuracy of decision trees improved
substantially

 OOB average error used instead of Cross
Validation



Example Distribution

13



Decision Tree Decision Boundary

1.0

0.5

-0.5
[

-1.0

| | | | |
-1.0 -0.5 0.0 0.5 1.0

14



100 Bagged Trees

1.0

0.5
|

0.0

0.5

-1.0

[ [ 1 T [
-1.0 -0.5 0.0 0.5 1.0

shades of blue/red indicate strength of vote for particular classification

15



Random Forests

* Ensemble method specifically designed for decision
tree classifiers

* Introduce two sources of randomness: “Bagging
hk . ”
and Random input vectors

— Bagging method: each tree is grown using a bootstrap
sample of training data

— Random vector method: At each node, best split is chosen
from a random sample of m attributes instead of all
attributes

16



Random Forests

* Construct decision trees on bootstrap replicas

— Restrict the node decisions to a small subset of features
picked randomly for each node

* Do not prune the trees

— Estimate tree performance

X
on out-of-bootstrap data / \
* Average the output ? f:x :5 {1 § iz:
/

of all trees (or

choose mode decision) \,ﬁé/

+

—/
Trees are de-correlated by choice of t
random subset of features

17



Random Forest Algorithm

1. Forb=1 to B:

(a) Draw a|bootstrap sample| S of size N from the training data.

(b) Grow a random-forest tree 7j, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,,;,, 1s reached.

1. Select|m variables at random|from the p variables.

ii. Pick the best variable/split-point among the m.

1i1. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}5.

To make a prediction at a new point x:

Classification: Let Cy(z) be the class prediction of the bth random-forest
tree. Then CZ(z) = majority vote {Cy,(x)}P.

If m=p, this is equivalent to Bagging

18



Effect of Number of Predictors

| m=p
w0y m=p/2
L ] m= p
S
T
= = _]
= =
©
=
T"é
ag
L, @ _
O o
W
o
o
o
| | | | |
0 100 200 300 400 500

Number of Trees

* p =total number of predictors; m = predictors chosen in
each split

* Random Forests uses m = \/p

19



Variable Importance

e Ensemble of trees looses somewhat
interpretability of decision trees

* Which variables contribute mostly to
prediction?

e Random Forest computes a Variable
Importance metric



Gini index
Take a node of decision tree

Let p; be the fraction of examples from class i

Measures the “purity” of the node

— If node has most examples from one class, Gini
index is low

What is the probability that a random
example is mis-classified at that node?

- Y pi(1—py)
Variable importance of a feature measures
decrease in Gini



Variable Importance Plots

Fbs

RestECG

ExAng
Sex

Slope
Chol

Age
RestBP
MaxHR
Oldpeak
ChestPain
Ca

Thal

O -
8—1
-
-

40 60 80 100
Variable Importance

FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the maximum.

22



Lab

library(randomForest)
rf.carseats=randomForest (High~.-5Sales,Carseats, subset=train, importance=TRUE)
rf.carseats

vvVvVvVvyV

Call:
randomForest (formula = High ~ . - Sales, data = Carseats, importance = TRUE,
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 3

O0OB estimate of error rate: 18.5%
Confusion matrix:
No Yes class.error
No 104 14 0.1186441
Yes 23 59 0.2804878

>
> rf.pred=predict (rf.carseats,Carseats.test,type="class"™)
> table(rf.pred,High.test)
High.test

rf.pred No Yes

No 105 25

Yes 13 57
> mean(rf.pred==High.test)
[IJ 0.81

subset = train)

23



Lab

> importance (rf.carseats, type=2)
MeanDecreaseGini

CompPrice 10.444114
Income ©.204883
Advertising 12.367002
Population T.722053
Price 23.437998
ShelvelLoc 15.0536%94
Age 10.135102
Education 4.879102
Urban 1.585268

us 1.3659725



Lab

> varImpPlot (rf.carseats)

Price
Shelveloc
Advertising
CompPrice
Age
Income

us

Urban
Education

Population

o]

1
0

N I N
10 20 30

MeanDecreaseAccuracy

Price
Shelveloc
Advertising
CompPrice
Age
Income
Population
Education
Urban

US

0 5 15
MeanDecreaseGini

25



How to Achieve Diversity

* Avoid overfitting
— Vary the training data

* Features are noisy

— Vary the set of features

Two main ensemble learning methods
* Bagging (e.g., Random Forests)
* Boosting (e.g., AdaBoost)



AdaBoost

* A meta-learning algorithm with great theoretical and
empirical performance

* Turns a base learner (i.e., a “weak hypothesis”) into a
high performance classifier

* Creates an ensemble of weak hypotheses by
repeatedly emphasizing mispredicted instances

Adaptive Boosting
Freund and Schapire 1997

27



AdaBoost

1: Initialize a vector of n uniform weights wy

2 forit=1,..., T

3 Train model hy on X,y with weights wy
4: Compute the weighted training error of hy
5: Choose 3; = %111 (ﬂ)
| =

6: Update all instance weights:

wepri = wei exp(—BryPhe(x))
T Normalize w11 to be a distribution
8: end for

9: Return the hypothesis

T
H(x) = sign (Z :fa’th.t(x))
t=1

* Size of point represents the instance’s weight

28



AdaBoost

1: Initialize a vector of n uniform weights wy
2. fort=1..... T
3 Train model h; on X, vy with weights wy
4 Compute the weighted tramming error of fi;
5: Choose 3; = %111 (ﬂ)
| o
6: Update all instance weights:
[ [

Wiy = Wi eXp(_,Bty( )ht(x( )))
7 Normalize w;1 1 to be a distribution
8: end for
9: Return the hypothesis

T
H(x) = sign (Zﬁtht(x))
t=1

29



AdaBoost

1: Initialize a vector of n uniform weights wy
2. fort=1,..., T

3 Train model h; on X,y with weights wy
4. Compute the weighted training error of h;
5% Choose 3; = %111 (ﬂ)
i Et
6: Update all instance weights:
wig1, = wei exp(—Lry P h(xD))
7 Normalize w;y1 to be a distribution

8: end for
9: Return the hypothesis

T
H(x) = sign (Z ;’a’tht(x))

t=1




1: Initialize a vector of n uniform weights wy

AdaBoost

2: fort=1,....T
3: Train model h; on X,y with weights wy
4 Compute the weighted training error of hy
5% Choose 3; = %111 (ﬂ)
. o

6: Update all instance weights:

wip1i = wii exp(=BeyPhe(x®))
7 Normalize w;11 to be a distribution

8: end for
9: Return the hypothesis

T
H(x) = sign (Z ;’i’tht(x)>
t=1

* Compute importance of hypothesis f5;
* Update weights w;

31



AdaBoost

1: Initialize a vector of n uniform weights wy

2: fort=1..... T

3 Train model h; on X,y with weights wy
4: Compute the weighted training error of Ay
5: Choose 3; = %111 (ﬂ)
. o
6: Update all instance weights:
Wi = wei exp(—Pey D he (x V)
7 Normalize w1 to be a distribution

8: end for
9: Return the hypothesis

T
H(x) = sign (Z,{i}ht(x))
t=1

32



AdaBoost

1: Initialize a vector of n uniform weights wy
2. fort=1.....T

3: Train model h; on X,y with weights w;
4: Compute the weighted training error of h;
5% Choose 5y = %111 (ﬂ)
! Et
6: Update all instance weights:
£\ AN

Wi41,i = Wi €XP{=pr Y e (X))
7 Normalize w;11 to be a distribution
8: end for

9: Return the hypothesis

T
H(x) = sign (Z.-’i’tht(x))
t=1

* Compute importance of hypothesis f5;
* Update weights w;

33



AdaBoost

1: Initialize a vector of n uniform weights wy

2. fort=1,....T
3: Train model h; on X,y with weights wy
4: ‘ompute the weighted training error of A

5t Choose 5; = % In (ﬂ)
€t
Update all instance weights:
wisr = weir expl—Bey Py (x D))

7 Normalize w11 to be a distribution

8: end for
9: Return the hyvpothesis

T
H(x) = sign (Z ,.-%h.t(x))
t=1

* Final model is a weighted combination of members

— Each member weighted by its importance

34



[

[uhy |

=1

9

TSI

AdaBoost

INPUT: training data X,y = {(x®,y®)},i=1..n
the number of iterations 7'
. Initialize a vector of n uniform weights w; = [—, .
fori=1..... T

Train model h; on X, y with instance weights wy

Compute the weighted training error rate of hy:
€t — Z Wt
’i:yi?fht(xz']
Choose [y = % In (%)
t
Update all instance weights:
Wiy, = W exp(—ﬁty(i)ht(x(i))), i= 1,....n

Normalize w1 to be a distribution:

Wt41,i :
Wty — T 1 . Vi=1,
Zj:l We41,5
- end for

. Return the hypothesis

T
H(x) = sign (Z,{S’tht(x))
=1

35



Train with Weighted Instances

* For algorithms like logistic regression, can simply
incorporate weights w into the cost function

— Essentially, weigh the cost of misclassification differently
for each instance

T

Jreg(g) - = Z W [yz lOg ]I'B(X'i) + (1 - yf) log (1 _ ]1'9(}{?'-))] + )\He[l:fﬂ Hi
1=1

* For algorithms that don’t directly support instance
weights (e.g., ID3 decision trees, etc.), use weighted
bootstrap sampling

— Form training set by resampling instances with
replacement according to w

36



Base Learner Requirements

 AdaBoost works best with “weak” learners
— Should not be complex
— Typically high bias classifiers

— Works even when weak learner has an error rate just
slightly under 0.5 (i.e., just slightly better than random)

* Can prove training error goes to 0 in O(log n) iterations

* Examples:

— Decision stumps (1 level decision trees)
— Depth-limited decision trees

— Linear classifiers

37



Properties

* |f a point is repeatedly misclassified
— Its weight is increased every time

— Eventually it will generate a hypothesis that
correctly predicts it

* |n practice AdaBoost does not overfit
* Does not use explicitly regularization



No overfitting

N
o

AdaBoost on OCR data with
C4.5 as the base learner

Test

percent error
— —
S

18]

10 100 1000

rounds of boosting

* Empirically, boosting resists overfitting

 Note that it continues to drive down the test error
even AFTER the training error reaches zero

39



AdaBoost in Practice
Strengths:

* Fast and simple to program
* No parameters to tune (besides T)

* No assumptions on weak learner

When boosting can fail:

* Given insufficient data
* Overly complex weak hypotheses
* Can be susceptible to noise

* When there are a large number of outliers

40



Review

* Ensemble learning are powerful learning
methods

e Bagging uses bootstrapping (with replacement),
trains T models, and averages their prediction

— Random forests vary training data and feature set at
each split
* Boosting is an ensemble of weak learners that
emphasizes mis-predicted examples

— AdaBoost has great theoretical and experimental
performance

— Can be used with linear models or simple decision
trees



Acknowledgements

* Slides made using resources from:
— Andrew Ng
— Eric Eaton
— David Sontag
— Andrew Moore

e Thanks!



