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Review

• Decision trees are interpretable, non-linear 
models

– Greedy algorithm to train Decision Trees (ID3)

– Works on categorical and numerical data 

– Node splitting done by feature with max 
Information Gain

• Ensemble learning 

– Combines multiple ML models for better accuracy

– Reduces variance of individual model
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Outline

• Ensemble learning

– How to combine classifiers

– Variance reduction

– Methods to create diversity

• Bagging method  

– Random Forest model

– Variable importance

• Boosting method

– AdaBoost
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Ensemble Learning
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Combining Classifiers: Averaging
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Combining Classifiers: Weighted 
Averaging
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Reduce Variance
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How to Achieve Diversity

• Avoid overfitting

– Vary the training data

• Features are noisy

– Vary the set of features

Two main ensemble learning methods

• Bagging (e.g., Random Forests)

• Boosting (e.g., AdaBoost)
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Bagging
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General Idea
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Example of Bagging
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• Sample each training point with probability 1/n
• Out-Of-Bag (OOB) observation: point not in sample

• For each point: prob (1-1/n)n 

• About 1/3 of data
• OOB error: error on OOB samples

• OOB average error 
• Compute across all models in Ensemble
• Use instead of Cross-Validation error



Bagging

• Can be applied to multiple classification 
models

• Very successful for decision trees
– Decision trees have high variance

– Don’t prune the individual trees, but grow trees to 
full extent

– Precision accuracy of decision trees improved 
substantially

• OOB average error used instead of Cross 
Validation
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Example Distribution
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Decision Tree Decision Boundary
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100 Bagged Trees
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Random Forests
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Random Forests
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Trees are de-correlated by choice of 
random subset of features



Random Forest Algorithm
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If m=p, this is equivalent to Bagging
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Effect of Number of Predictors
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• 𝑝 = total number of predictors; 𝑚 = predictors chosen in 
each split

• Random Forests uses 𝑚 = √𝑝



Variable Importance

• Ensemble of trees looses somewhat 
interpretability of decision trees

• Which variables contribute mostly to 
prediction?

• Random Forest computes a Variable 
Importance metric
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Gini index

• Take a node of decision tree 

• Let 𝑝𝑖 be the fraction of examples from class i

• Measures the “purity” of the node
– If node has most examples from one class, Gini 

index is low

• What is the probability that a random 
example is mis-classified at that node?

– σ𝑖=1
𝑘 𝑝𝑖(1 − 𝑝𝑖)

• Variable importance of a feature measures 
decrease in Gini
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Variable Importance Plots
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Lab
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Lab
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Lab
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How to Achieve Diversity

• Avoid overfitting

– Vary the training data

• Features are noisy

– Vary the set of features

Two main ensemble learning methods

• Bagging (e.g., Random Forests)

• Boosting (e.g., AdaBoost)
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AdaBoost
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Adaptive Boosting 
Freund and Schapire 1997



AdaBoost
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AdaBoost
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AdaBoost
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AdaBoost
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• Compute importance of hypothesis 𝛽𝑡
• Update weights 𝑤𝑡

exp(−𝛽𝑡𝑦
𝑖 ℎ𝑡(𝑥

𝑖 ))



AdaBoost
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AdaBoost
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• Compute importance of hypothesis 𝛽𝑡
• Update weights 𝑤𝑡
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AdaBoost
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AdaBoost
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{(𝑥(𝑖), 𝑦(𝑖))}, i = 1…n

exp(−𝛽𝑡𝑦
𝑖 ℎ𝑡(𝑥

𝑖 )), i =



Train with Weighted Instances

36



Base Learner Requirements
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Properties

• If a point is repeatedly misclassified

– Its weight is increased every time

– Eventually it will generate a hypothesis that 
correctly predicts it

• In practice AdaBoost does not overfit

• Does not use explicitly regularization
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No overfitting
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AdaBoost in Practice
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Review

• Ensemble learning are powerful learning 
methods

• Bagging uses bootstrapping (with replacement), 
trains T models, and averages their prediction
– Random forests vary training data and feature set at 

each split

• Boosting is an ensemble of weak learners that 
emphasizes mis-predicted examples
– AdaBoost has great theoretical and experimental 

performance 

– Can be used with linear models or simple decision 
trees
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