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Background

e Ph.D. at CMU

— Research in storage security & cryptographic file
systems

e RSA Laboratories

— Cloud security, applied cryptography
— Security analytics (ML in security)

e NEU CCIS —since Fall 2016

— ML for security applications (threat detection, loT,
fuzzing)

— Adversarial ML



Class Introductions

* Enrollment of 13



Machine learning is everywhere
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DS-4400

* What is machine learning?
— The science of teaching machines how to learn
— Design predictive algorithms that learn from data
— Replace humans in critical tasks
— Subset of Al

* Machine learning very successful in:
— Machine translation
— Precision medicine
— Recommendation systems
— Self-driving cars
* Why the hype?

— Availability: data created/reproduced in 2010 reached
1,200 exabytes

— Reduced cost of storage
— Computational power (cloud, multi-core CPUs, GPUs)



Natural Language Processing (NLP)

e = (Economic, growth, has, slowed, down, in, recent, years, .)

- Understand language semantics
- Real-time translation, speech recognition



Autonomous vehicles

Y

* Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V21) communication
* Assist drivers in making decisions to increase safety



Personalized medicine

Without Personalized Medicine: With Personalized Medicine:
Some Benefit, Some Do Not Each Patient Receives the Right Medicine For Them
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Individualized Treatment

* Treatment adjusted to individual patients
* Predictive models using a variety of features
related to patient history and genetics
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Playing games
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Reinforcement learning
- AlphaGo
- Chess
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DS-4400 Course objectives

Become familiar with machine learning tasks
— Supervised learning vs unsupervised learning
— Classification vs Regression vs Clustering

Study most well-known algorithms and
understand to which problem they apply

— Regression (linear regression)
— Classification (SVM, decision trees, neural networks)
— Clustering (k-means )

Learn to apply ML algorithms to real datasets
— Using existing packages in R and Python

Learn about security challenges of ML
— Introduction to adversarial ML

http://www.ccs.neu.edu/home/alina/classes/Fall2018/
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Class Outline

Introduction — 1 week
— Probability and linear algebra review

Supervised learning - 5 weeks
— Linear regression

— Classification (logistic regression, LDA, kNN, decision trees,
random forest, SVM, Naive Bayes)

— Model selection, regularization, cross validation
Neural networks and deep learning — 1.5 weeks
— Back-propagation, gradient descent

— NN architectures

Unsupervised learning — 2.5 weeks

— Dimensionality reduction (PCA)

— Clustering (k-means, hierarchical)

Adversarial ML — 1 week

— Security of ML at testing and training time
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Textbook

An Introduction to Statistical Learning

with Applications in R

Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani

Home

About this Book

R Code for Labs
Data Sets and Figures
ISLR Package

Get the Book

Author Bios

Errata
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Download the book PDF
(corrected 7th printing)

Gareth James

| Daniela Witten
HETIGESTE
Robert Tibshirani

An Introduction
to Statistical

Learning

Statistical Learning MOOC covering the

entire ISL book offered by Trevor Hastie

and Rob Tibshirani. Start anytime in self-
paced mode.
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Policies

Instructors

— Alina Oprea

— TA: Anand Lad

Schedule

— Tue 11:45am — 1:25pm, Thu 2:50-4:30pm; Ryder Hall 158

— Office hours:
e Alina: Thu 4:30 - 6:00 pm (ISEC 625)
* Anand: Tue 2-3pm (ISEC 605)

Your responsibilities

— Please be on time and attend classes

— Participate in interactive discussion

— Submit assighments/ programming projects on time
Late days for assignments

— 5 total late days, after that loose 20% for every late day

— Assignments are due at 11:59pm on the specified date
Respect university code of conduct

— No collaboration on homework / programming projects

— http://www.northeastern.edu/osccr/academic-integrity-policy/
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Grading

Assignments — 20%

— 4-5 assignments based on studied material in class,

including programming exercises

— Language: R or Python; Jupyter notebooks

Final project — 25%

— Select your own project based on public dataset
— Submit short project proposal and milestone

— Presentation at end of class (10 min) and report
Exams — 50%

— Midterm — 25%

— Final exam — 25%
Class participation — 5%

— Participate in class discussion and on Piazza



Outline

e Supervised learning

* Classification
* Regression

* Unsupervised learning

* Clustering

e Bias-Variance Tradeoff
e Occam’s Razor

Slides adapted from

* A.Zisserman, University of Oxford, UK

* S.Ullman, T. Poggio, D. Harari, D. Zysman, D Seibert, MIT
* D. Sontag, MIT

* Figures from “An Introduction to Statistical Learning”, James et al.
17



Introduction

* What is Machine Learning?
— Subset of Al

— Design algorithms that learn from real data and can
automate critical tasks

* When can it be applied?
— It cannot solve any problem!
— When task can be expressed as learning task
— When high-quality data is available

e Labeled data (by human experts) is preferable!

— When some error is acceptable (can rarely achieve
100% accuracy)

* Example: recommendation system, advertisement engine



Example 1

Handwritten digit recognition
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Images are 28 x 28 pixels

Represent input image as a vector x € R784

Learn a classifier f(x) such that,

Predict the digit
Multi-class classifier
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Supervised Learning: Overview

Hypothesis Functions F Training data
space f: XY (i, ) € X x V}

Training

LEARNING

Learning machine

@ New data

PREDICTION §y=f(z) i ¢ig Testing

f model
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Classification
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Binary
« Suppose we are given a training set of N observations

(z1,...,zx) and (y1,...,yn),z;i € R% y; €

» Classification problem is to estimate f(x) from this data such that

f(xi) =y

Extended to multi-label classification
* handwritten digit recognition
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Model the problem

As a supervised classification problem

Start with training data, e.g. 6000 examples of each digit

ool N\ (48172
D232 A25>7
3¢ 79940 46>59
L7727\ 71T427
P8 73809497

« Can achieve testing error of 0.4%

» One of first commercial and widely used ML systems (for zip codes & checks)
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Example 2
Stock market prediction

S&P/TSX COMPOSITE
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Copuright 2008 Yahoo! Inc, http://finance .yahoo .com/

» Task is to predict stock price at future date
* This is a regression task, as the output is continuous

23



Regression
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+ Suppose we are given a training set of N observations
(z1,...,zy) and (y1,...,yn)

* Regression problem is to estimate y(x) from this data

X. = (X,.--X;y) - d predictors (features)
Yy, - response variable
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Inear regression

Multi-dimensional |

»

25

X



Wage Prediction
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FIGURE 1.1. Wage data, which contains income survey information for males
from the central Atlantic region of the United States. Left: wage as a function of
age. On average, wage increases with age until about 60 years of age, at which
point it begins to decline. Center: wage as a function of year. There is a slow
but steady increase of approrimately $10,000 in the average wage between 2003
and 2009. Right: Borplots displaying wage as a function of education, with 1
indicating the lowest level (no high school diploma) and 5 the highest level {an
advanced graduate degree). On average, wage increases with the level of education.
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Example 3: image search

Clustering images

Find similar images to a target one
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Three canonical learning problems

1. Regression - supervised
- estimate parameters, e.g. of weight vs height

2. Classification - supervised
- estimate class, e.g. handwritten digit classification
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3. Unsupervised learning — model the data

« clustering
*
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dimensionality reduction
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Terminology

Hypothesis space H = {f: X — Y}
Training data D = (x;,y;) EX XY
Features: x; € X

Labelsy; €Y

— Classification: discrete y; € {-1,1}

— Regression: y; € R

Loss function: L(f, D)

— Measures how well f fits training data

Training algorithm: Find hypothesis f:X - Y

~ f = argmin L(f,D)

30



Learning f

Estimate f from training data

— Classification error defined as:
N XS [y # £ ()]

Real goal

— Classify well new testing data

Variance

— Amount by which f would change if we estimated it using a
different training data set

— More complex models result in higher variance

Bias

— Error introduced by approximating a real-life problem by a much
simpler model

— E.g., assume linear model (linear regression)

— More complex models result in lower bias

Bias-Variance tradeoff
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* True data — Black
* Linear model — Orange (High Bias, Low Variance)
* Other models — Green and Blue (High variance, Low Bias)
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Error

Bias-Variance Tradeoff

Total Error

Variance

Optimum Model Complexily

Model Complexity

5 >
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Generalization

* The real aim of supervised learning is to do well on test data that is
not known during learning

» Choosing the values for the parameters that minimize the loss
function on the training data is not necessarily the best policy

» We want the learning machine to model the true regularities in the
data and to ignore the noise in the data.

* Risk of overfitting model to training data
- Could result in poor accuracy on new testing data

34



Generalization Problem in Classification

Underfitting — 3 Overfitting

« Again, need to control the complexity of the (discriminant)
function
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Occam’s Razor

«  William of Occam: Monk living in the 14t century
* Principle of parsimony:

“One should not increase, beyond what is necessary, the number of
entities required to explain anything”

« When many solutions are available for a given problem, we should
select the simplest one

« But what do we mean by simple?

« We will use prior knowledge of the problem to solve to define what is
a simple solution

36



Key insights

ML is a subset of Al designing learning algorithms

* Learning tasks are supervised (e.g., classification
and regression) or unsupervised (e.g., clustering)

— Supervised learning uses labeled training data

* Learning the “best” model is challenging
— Select hypothesis space and loss function
— Design algorithm to min loss function
— Bias-Variance tradeoff
— Need to generalize on new, unseen test data

— Occam'’s razor (prefer simplest model with good
performance)



