Unbiased Asymmetric Reinforcement Learning under Partial Observability

AAMAS 2022, Auckland, New Zealand

Andrea Baisero Christopher Amato {baisero.a,c.amato}@northeastern.edu Northeastern University, Boston, USA

Overview

Setting

- Single-agent
- Model-free
- Partially observable (significant amounts)
- Reinforcement learning
- Offline training / online execution

_

Background

Offline Training / Online Execution (OTOE)

- Safety during training
- Faster training, e.g., via parallelization
- Access to privileged information

Privileged Information

- Multi-agent RL: Joint history \bar{h}
- Single-agent RL: Latent state s
- How to exploit it?
 - + Great potential
 - Lack of theoretical justification
 - Misuse \implies grave issues

Background

(Symmetric) Advantage Actor-Critic (A2C)

• Actor and critic models $\pi(h)$ and $\hat{V}(h)$, trained using

$$\nabla J \propto \mathbb{E}\left[\sum_{t} \gamma^{t} \delta_{t} \nabla \log \pi(a_{t}; h_{t})\right]$$
(1)
$$\delta_{t} = r_{t} + \gamma \hat{V}(h_{t+1}) - \hat{V}(h_{t})$$
(2)

Asymmetric Advantage Actor-Critic (Asym-A2C)

• Actor and critic models $\pi(h)$ and $\hat{V}(s)$, trained using

$$\delta_t = r_t + \gamma \hat{V}(s_{t+1}) - \hat{V}(s_t)$$
(3)

_

- True state \implies more informative critic
- More informative critic \implies improved policy gradient

Contributions

In Our Paper

- Theory of asymmetric A2C and $V^{\pi}(s)$
 - Expose conceptual and formal issues
 - $V^{\pi}(s)$ ill-defined and/or biased
- Unbiased Asymmetric A2C
 - Uses history-state values $V^{\pi}(h,s)$
 - V^π(h, s) well-defined and unbiased!
- Interpretation of state as stochastic features of history
- Empirical evaluation on partially observable environments
 - Requires information gathering + memorization

Theory of State-Based Value Functions

Formal Methodology

- Policy gradient $\nabla J \propto \mathbb{E}\left[\sum_t \gamma^t Q^{\pi}(h_t, a_t) \nabla \log \pi(a_t; h_t)\right]$
- $Q^{\pi}(h, a)$ is the correct theoretical quantity
- V^{π} instead of Q^{π} (same implications)
- $V^{\pi}(s)$ as estimator of $V^{\pi}(h)$ $\implies V^{\pi}(s)$ unbiased iff $V^{\pi}(h) = \mathbb{E}_{s|h} \left[V^{\pi}(s) \right]$

	Theory of State-Based Value Functions		Conclusions
	0000		
TTI 1 1 1 1 1 1 1 1 1 1	COLLE DESERVATION E	and a state of a	
I neory of	DI STATE-Based Value FI	Inctions	
	JI Slale-Daseu value FI		

An Informal Argument Against State Values

Figure: HeavenHell-3. The optimal agent will visit the priest to learn which exit leads to heaven, and which to hell.

History Aliasing

- s not a sufficient statistic of h
 - \implies s unable to determine agent behavior
 - $\implies V^{\pi}(s)$ unable to represent expected rewards
- Ideally, $V^{\pi}(s = \text{Fork})$ high if priest visited low if priest not visited
- Actually, $V^{\pi}(s = \text{Fork})$ unable to differentiate histories

Theory of State-Based Value Functions

Cases

- General policy under partial observability
 - $\implies V_t^{\pi}(s)$ well-defined
 - $\implies V^{\pi}(s)$ ill-defined (issue w/ time-invariant history RV)
- Reactive policy under partial observability
 ⇒ V^π(s) well-defined but biased
- Reactive policy under virtually "full" observability $\implies V^{\pi}(s)$ well-defined and virtually unbiased

Takeaway

• $V^{\pi}(s)$ not suitable for partial observability

Theory of State-Based Value Functions

Unbiased Asymmetric A2C

History-State Value Function $V^{\pi}(h,s)$

$$V^{\pi}(h,s) = \sum_{a} \pi(a; h) \left(R(s, a) + \gamma \mathbb{E}_{s', o|s, a} \left[V^{\pi}(hao, s') \right] \right)$$

•
$$V^{\pi}(h,s)$$
 as estimator of $V^{\pi}(h)$

- Well-defined
- Unbiased, $V^{\pi}(h) = \mathbb{E}_{s|h} \left[V^{\pi}(h, s) \right]$
- Low state uncertainty \implies low variance

Asymmetric Policy Gradient Theorem

$$\nabla J \propto \mathbb{E}\left[\sum_{t} \gamma^{t} Q^{\pi}(h_{t}, s_{t}, a_{t}) \nabla \log \pi(a_{t}, h_{t})\right]$$

Evaluation

Environments

- 8 environments with significant partial observability
 - Information gathering strategies
 - Mid-long term memorization

Algorithms

- A2C-react-{2,4}: history critic $\hat{V}(h)$ (short-term memory)
 - Short-term memory
 - Included to show partial observability
- A2C: history critic $\hat{V}(h)$
- A2C-asym-s: state critic $\hat{V}(s)$
- A2C-asym-hs: history-state critic $\hat{V}(h,s)$

Evaluation

Results

Conclusions

Contributions

- Theory of asymmetric A2C and $V^{\pi}(s)$
 - Expose conceptual and formal issues
 - $V^{\pi}(s)$ ill-defined and/or biased
- Unbiased Asymmetric A2C
 - Uses history-state values $V^{\pi}(h,s)$
 - $V^{\pi}(h,s)$ well-defined and unbiased!
- Interpretation of state as stochastic features of history
- Empirical evaluation on partially observable environments
 - Requires information gathering + memorization

